Step |
Hyp |
Ref |
Expression |
1 |
|
xrsxmet.1 |
|- D = ( dist ` RR*s ) |
2 |
|
rexr |
|- ( P e. RR -> P e. RR* ) |
3 |
1
|
xrsxmet |
|- D e. ( *Met ` RR* ) |
4 |
|
eqid |
|- ( `' D " RR ) = ( `' D " RR ) |
5 |
4
|
blssec |
|- ( ( D e. ( *Met ` RR* ) /\ P e. RR* /\ R e. RR* ) -> ( P ( ball ` D ) R ) C_ [ P ] ( `' D " RR ) ) |
6 |
3 5
|
mp3an1 |
|- ( ( P e. RR* /\ R e. RR* ) -> ( P ( ball ` D ) R ) C_ [ P ] ( `' D " RR ) ) |
7 |
2 6
|
sylan |
|- ( ( P e. RR /\ R e. RR* ) -> ( P ( ball ` D ) R ) C_ [ P ] ( `' D " RR ) ) |
8 |
|
vex |
|- x e. _V |
9 |
|
simpl |
|- ( ( P e. RR /\ R e. RR* ) -> P e. RR ) |
10 |
|
elecg |
|- ( ( x e. _V /\ P e. RR ) -> ( x e. [ P ] ( `' D " RR ) <-> P ( `' D " RR ) x ) ) |
11 |
8 9 10
|
sylancr |
|- ( ( P e. RR /\ R e. RR* ) -> ( x e. [ P ] ( `' D " RR ) <-> P ( `' D " RR ) x ) ) |
12 |
4
|
xmeterval |
|- ( D e. ( *Met ` RR* ) -> ( P ( `' D " RR ) x <-> ( P e. RR* /\ x e. RR* /\ ( P D x ) e. RR ) ) ) |
13 |
3 12
|
ax-mp |
|- ( P ( `' D " RR ) x <-> ( P e. RR* /\ x e. RR* /\ ( P D x ) e. RR ) ) |
14 |
|
simpr |
|- ( ( ( ( P e. RR /\ R e. RR* ) /\ ( P e. RR* /\ x e. RR* /\ ( P D x ) e. RR ) ) /\ P = x ) -> P = x ) |
15 |
|
simplll |
|- ( ( ( ( P e. RR /\ R e. RR* ) /\ ( P e. RR* /\ x e. RR* /\ ( P D x ) e. RR ) ) /\ P = x ) -> P e. RR ) |
16 |
14 15
|
eqeltrrd |
|- ( ( ( ( P e. RR /\ R e. RR* ) /\ ( P e. RR* /\ x e. RR* /\ ( P D x ) e. RR ) ) /\ P = x ) -> x e. RR ) |
17 |
|
simplr3 |
|- ( ( ( ( P e. RR /\ R e. RR* ) /\ ( P e. RR* /\ x e. RR* /\ ( P D x ) e. RR ) ) /\ P =/= x ) -> ( P D x ) e. RR ) |
18 |
|
simplr1 |
|- ( ( ( ( P e. RR /\ R e. RR* ) /\ ( P e. RR* /\ x e. RR* /\ ( P D x ) e. RR ) ) /\ P =/= x ) -> P e. RR* ) |
19 |
|
simplr2 |
|- ( ( ( ( P e. RR /\ R e. RR* ) /\ ( P e. RR* /\ x e. RR* /\ ( P D x ) e. RR ) ) /\ P =/= x ) -> x e. RR* ) |
20 |
|
simpr |
|- ( ( ( ( P e. RR /\ R e. RR* ) /\ ( P e. RR* /\ x e. RR* /\ ( P D x ) e. RR ) ) /\ P =/= x ) -> P =/= x ) |
21 |
1
|
xrsdsreclb |
|- ( ( P e. RR* /\ x e. RR* /\ P =/= x ) -> ( ( P D x ) e. RR <-> ( P e. RR /\ x e. RR ) ) ) |
22 |
18 19 20 21
|
syl3anc |
|- ( ( ( ( P e. RR /\ R e. RR* ) /\ ( P e. RR* /\ x e. RR* /\ ( P D x ) e. RR ) ) /\ P =/= x ) -> ( ( P D x ) e. RR <-> ( P e. RR /\ x e. RR ) ) ) |
23 |
17 22
|
mpbid |
|- ( ( ( ( P e. RR /\ R e. RR* ) /\ ( P e. RR* /\ x e. RR* /\ ( P D x ) e. RR ) ) /\ P =/= x ) -> ( P e. RR /\ x e. RR ) ) |
24 |
23
|
simprd |
|- ( ( ( ( P e. RR /\ R e. RR* ) /\ ( P e. RR* /\ x e. RR* /\ ( P D x ) e. RR ) ) /\ P =/= x ) -> x e. RR ) |
25 |
16 24
|
pm2.61dane |
|- ( ( ( P e. RR /\ R e. RR* ) /\ ( P e. RR* /\ x e. RR* /\ ( P D x ) e. RR ) ) -> x e. RR ) |
26 |
25
|
ex |
|- ( ( P e. RR /\ R e. RR* ) -> ( ( P e. RR* /\ x e. RR* /\ ( P D x ) e. RR ) -> x e. RR ) ) |
27 |
13 26
|
syl5bi |
|- ( ( P e. RR /\ R e. RR* ) -> ( P ( `' D " RR ) x -> x e. RR ) ) |
28 |
11 27
|
sylbid |
|- ( ( P e. RR /\ R e. RR* ) -> ( x e. [ P ] ( `' D " RR ) -> x e. RR ) ) |
29 |
28
|
ssrdv |
|- ( ( P e. RR /\ R e. RR* ) -> [ P ] ( `' D " RR ) C_ RR ) |
30 |
7 29
|
sstrd |
|- ( ( P e. RR /\ R e. RR* ) -> ( P ( ball ` D ) R ) C_ RR ) |