| Step |
Hyp |
Ref |
Expression |
| 1 |
|
xrsxmet.1 |
|- D = ( dist ` RR*s ) |
| 2 |
1
|
xrsdsreval |
|- ( ( x e. RR /\ y e. RR ) -> ( x D y ) = ( abs ` ( x - y ) ) ) |
| 3 |
|
ovres |
|- ( ( x e. RR /\ y e. RR ) -> ( x ( D |` ( RR X. RR ) ) y ) = ( x D y ) ) |
| 4 |
|
eqid |
|- ( ( abs o. - ) |` ( RR X. RR ) ) = ( ( abs o. - ) |` ( RR X. RR ) ) |
| 5 |
4
|
remetdval |
|- ( ( x e. RR /\ y e. RR ) -> ( x ( ( abs o. - ) |` ( RR X. RR ) ) y ) = ( abs ` ( x - y ) ) ) |
| 6 |
2 3 5
|
3eqtr4d |
|- ( ( x e. RR /\ y e. RR ) -> ( x ( D |` ( RR X. RR ) ) y ) = ( x ( ( abs o. - ) |` ( RR X. RR ) ) y ) ) |
| 7 |
6
|
rgen2 |
|- A. x e. RR A. y e. RR ( x ( D |` ( RR X. RR ) ) y ) = ( x ( ( abs o. - ) |` ( RR X. RR ) ) y ) |
| 8 |
1
|
xrsxmet |
|- D e. ( *Met ` RR* ) |
| 9 |
|
xmetf |
|- ( D e. ( *Met ` RR* ) -> D : ( RR* X. RR* ) --> RR* ) |
| 10 |
|
ffn |
|- ( D : ( RR* X. RR* ) --> RR* -> D Fn ( RR* X. RR* ) ) |
| 11 |
8 9 10
|
mp2b |
|- D Fn ( RR* X. RR* ) |
| 12 |
|
rexpssxrxp |
|- ( RR X. RR ) C_ ( RR* X. RR* ) |
| 13 |
|
fnssres |
|- ( ( D Fn ( RR* X. RR* ) /\ ( RR X. RR ) C_ ( RR* X. RR* ) ) -> ( D |` ( RR X. RR ) ) Fn ( RR X. RR ) ) |
| 14 |
11 12 13
|
mp2an |
|- ( D |` ( RR X. RR ) ) Fn ( RR X. RR ) |
| 15 |
|
cnmet |
|- ( abs o. - ) e. ( Met ` CC ) |
| 16 |
|
metf |
|- ( ( abs o. - ) e. ( Met ` CC ) -> ( abs o. - ) : ( CC X. CC ) --> RR ) |
| 17 |
|
ffn |
|- ( ( abs o. - ) : ( CC X. CC ) --> RR -> ( abs o. - ) Fn ( CC X. CC ) ) |
| 18 |
15 16 17
|
mp2b |
|- ( abs o. - ) Fn ( CC X. CC ) |
| 19 |
|
ax-resscn |
|- RR C_ CC |
| 20 |
|
xpss12 |
|- ( ( RR C_ CC /\ RR C_ CC ) -> ( RR X. RR ) C_ ( CC X. CC ) ) |
| 21 |
19 19 20
|
mp2an |
|- ( RR X. RR ) C_ ( CC X. CC ) |
| 22 |
|
fnssres |
|- ( ( ( abs o. - ) Fn ( CC X. CC ) /\ ( RR X. RR ) C_ ( CC X. CC ) ) -> ( ( abs o. - ) |` ( RR X. RR ) ) Fn ( RR X. RR ) ) |
| 23 |
18 21 22
|
mp2an |
|- ( ( abs o. - ) |` ( RR X. RR ) ) Fn ( RR X. RR ) |
| 24 |
|
eqfnov2 |
|- ( ( ( D |` ( RR X. RR ) ) Fn ( RR X. RR ) /\ ( ( abs o. - ) |` ( RR X. RR ) ) Fn ( RR X. RR ) ) -> ( ( D |` ( RR X. RR ) ) = ( ( abs o. - ) |` ( RR X. RR ) ) <-> A. x e. RR A. y e. RR ( x ( D |` ( RR X. RR ) ) y ) = ( x ( ( abs o. - ) |` ( RR X. RR ) ) y ) ) ) |
| 25 |
14 23 24
|
mp2an |
|- ( ( D |` ( RR X. RR ) ) = ( ( abs o. - ) |` ( RR X. RR ) ) <-> A. x e. RR A. y e. RR ( x ( D |` ( RR X. RR ) ) y ) = ( x ( ( abs o. - ) |` ( RR X. RR ) ) y ) ) |
| 26 |
7 25
|
mpbir |
|- ( D |` ( RR X. RR ) ) = ( ( abs o. - ) |` ( RR X. RR ) ) |