Step |
Hyp |
Ref |
Expression |
1 |
|
xrsds.d |
|- D = ( dist ` RR*s ) |
2 |
1
|
xrsdsval |
|- ( ( A e. RR* /\ B e. RR* ) -> ( A D B ) = if ( A <_ B , ( B +e -e A ) , ( A +e -e B ) ) ) |
3 |
2
|
3adant3 |
|- ( ( A e. RR* /\ B e. RR* /\ A =/= B ) -> ( A D B ) = if ( A <_ B , ( B +e -e A ) , ( A +e -e B ) ) ) |
4 |
3
|
eleq1d |
|- ( ( A e. RR* /\ B e. RR* /\ A =/= B ) -> ( ( A D B ) e. RR <-> if ( A <_ B , ( B +e -e A ) , ( A +e -e B ) ) e. RR ) ) |
5 |
|
eleq1 |
|- ( ( B +e -e A ) = if ( A <_ B , ( B +e -e A ) , ( A +e -e B ) ) -> ( ( B +e -e A ) e. RR <-> if ( A <_ B , ( B +e -e A ) , ( A +e -e B ) ) e. RR ) ) |
6 |
5
|
imbi1d |
|- ( ( B +e -e A ) = if ( A <_ B , ( B +e -e A ) , ( A +e -e B ) ) -> ( ( ( B +e -e A ) e. RR -> ( A e. RR /\ B e. RR ) ) <-> ( if ( A <_ B , ( B +e -e A ) , ( A +e -e B ) ) e. RR -> ( A e. RR /\ B e. RR ) ) ) ) |
7 |
|
eleq1 |
|- ( ( A +e -e B ) = if ( A <_ B , ( B +e -e A ) , ( A +e -e B ) ) -> ( ( A +e -e B ) e. RR <-> if ( A <_ B , ( B +e -e A ) , ( A +e -e B ) ) e. RR ) ) |
8 |
7
|
imbi1d |
|- ( ( A +e -e B ) = if ( A <_ B , ( B +e -e A ) , ( A +e -e B ) ) -> ( ( ( A +e -e B ) e. RR -> ( A e. RR /\ B e. RR ) ) <-> ( if ( A <_ B , ( B +e -e A ) , ( A +e -e B ) ) e. RR -> ( A e. RR /\ B e. RR ) ) ) ) |
9 |
1
|
xrsdsreclblem |
|- ( ( ( A e. RR* /\ B e. RR* /\ A =/= B ) /\ A <_ B ) -> ( ( B +e -e A ) e. RR -> ( A e. RR /\ B e. RR ) ) ) |
10 |
|
xrletri |
|- ( ( A e. RR* /\ B e. RR* ) -> ( A <_ B \/ B <_ A ) ) |
11 |
10
|
3adant3 |
|- ( ( A e. RR* /\ B e. RR* /\ A =/= B ) -> ( A <_ B \/ B <_ A ) ) |
12 |
11
|
orcanai |
|- ( ( ( A e. RR* /\ B e. RR* /\ A =/= B ) /\ -. A <_ B ) -> B <_ A ) |
13 |
|
necom |
|- ( A =/= B <-> B =/= A ) |
14 |
13
|
3anbi3i |
|- ( ( A e. RR* /\ B e. RR* /\ A =/= B ) <-> ( A e. RR* /\ B e. RR* /\ B =/= A ) ) |
15 |
|
3ancoma |
|- ( ( A e. RR* /\ B e. RR* /\ B =/= A ) <-> ( B e. RR* /\ A e. RR* /\ B =/= A ) ) |
16 |
14 15
|
bitri |
|- ( ( A e. RR* /\ B e. RR* /\ A =/= B ) <-> ( B e. RR* /\ A e. RR* /\ B =/= A ) ) |
17 |
1
|
xrsdsreclblem |
|- ( ( ( B e. RR* /\ A e. RR* /\ B =/= A ) /\ B <_ A ) -> ( ( A +e -e B ) e. RR -> ( B e. RR /\ A e. RR ) ) ) |
18 |
16 17
|
sylanb |
|- ( ( ( A e. RR* /\ B e. RR* /\ A =/= B ) /\ B <_ A ) -> ( ( A +e -e B ) e. RR -> ( B e. RR /\ A e. RR ) ) ) |
19 |
|
ancom |
|- ( ( B e. RR /\ A e. RR ) <-> ( A e. RR /\ B e. RR ) ) |
20 |
18 19
|
syl6ib |
|- ( ( ( A e. RR* /\ B e. RR* /\ A =/= B ) /\ B <_ A ) -> ( ( A +e -e B ) e. RR -> ( A e. RR /\ B e. RR ) ) ) |
21 |
12 20
|
syldan |
|- ( ( ( A e. RR* /\ B e. RR* /\ A =/= B ) /\ -. A <_ B ) -> ( ( A +e -e B ) e. RR -> ( A e. RR /\ B e. RR ) ) ) |
22 |
6 8 9 21
|
ifbothda |
|- ( ( A e. RR* /\ B e. RR* /\ A =/= B ) -> ( if ( A <_ B , ( B +e -e A ) , ( A +e -e B ) ) e. RR -> ( A e. RR /\ B e. RR ) ) ) |
23 |
4 22
|
sylbid |
|- ( ( A e. RR* /\ B e. RR* /\ A =/= B ) -> ( ( A D B ) e. RR -> ( A e. RR /\ B e. RR ) ) ) |
24 |
1
|
xrsdsreval |
|- ( ( A e. RR /\ B e. RR ) -> ( A D B ) = ( abs ` ( A - B ) ) ) |
25 |
|
recn |
|- ( A e. RR -> A e. CC ) |
26 |
|
recn |
|- ( B e. RR -> B e. CC ) |
27 |
|
subcl |
|- ( ( A e. CC /\ B e. CC ) -> ( A - B ) e. CC ) |
28 |
25 26 27
|
syl2an |
|- ( ( A e. RR /\ B e. RR ) -> ( A - B ) e. CC ) |
29 |
28
|
abscld |
|- ( ( A e. RR /\ B e. RR ) -> ( abs ` ( A - B ) ) e. RR ) |
30 |
24 29
|
eqeltrd |
|- ( ( A e. RR /\ B e. RR ) -> ( A D B ) e. RR ) |
31 |
23 30
|
impbid1 |
|- ( ( A e. RR* /\ B e. RR* /\ A =/= B ) -> ( ( A D B ) e. RR <-> ( A e. RR /\ B e. RR ) ) ) |