| Step |
Hyp |
Ref |
Expression |
| 1 |
|
xrsds.d |
|- D = ( dist ` RR*s ) |
| 2 |
|
necom |
|- ( A =/= B <-> B =/= A ) |
| 3 |
|
xrleltne |
|- ( ( A e. RR* /\ B e. RR* /\ A <_ B ) -> ( A < B <-> B =/= A ) ) |
| 4 |
|
mnfxr |
|- -oo e. RR* |
| 5 |
4
|
a1i |
|- ( ( ( A e. RR* /\ B e. RR* /\ A < B ) /\ ( B +e -e A ) e. RR ) -> -oo e. RR* ) |
| 6 |
|
simpl1 |
|- ( ( ( A e. RR* /\ B e. RR* /\ A < B ) /\ ( B +e -e A ) e. RR ) -> A e. RR* ) |
| 7 |
|
simpl2 |
|- ( ( ( A e. RR* /\ B e. RR* /\ A < B ) /\ ( B +e -e A ) e. RR ) -> B e. RR* ) |
| 8 |
|
pnfnre |
|- +oo e/ RR |
| 9 |
8
|
neli |
|- -. +oo e. RR |
| 10 |
|
mnfle |
|- ( A e. RR* -> -oo <_ A ) |
| 11 |
6 10
|
syl |
|- ( ( ( A e. RR* /\ B e. RR* /\ A < B ) /\ ( B +e -e A ) e. RR ) -> -oo <_ A ) |
| 12 |
|
simpl3 |
|- ( ( ( A e. RR* /\ B e. RR* /\ A < B ) /\ ( B +e -e A ) e. RR ) -> A < B ) |
| 13 |
5 6 7 11 12
|
xrlelttrd |
|- ( ( ( A e. RR* /\ B e. RR* /\ A < B ) /\ ( B +e -e A ) e. RR ) -> -oo < B ) |
| 14 |
|
xrltne |
|- ( ( -oo e. RR* /\ B e. RR* /\ -oo < B ) -> B =/= -oo ) |
| 15 |
5 7 13 14
|
syl3anc |
|- ( ( ( A e. RR* /\ B e. RR* /\ A < B ) /\ ( B +e -e A ) e. RR ) -> B =/= -oo ) |
| 16 |
|
xaddpnf1 |
|- ( ( B e. RR* /\ B =/= -oo ) -> ( B +e +oo ) = +oo ) |
| 17 |
7 15 16
|
syl2anc |
|- ( ( ( A e. RR* /\ B e. RR* /\ A < B ) /\ ( B +e -e A ) e. RR ) -> ( B +e +oo ) = +oo ) |
| 18 |
17
|
eleq1d |
|- ( ( ( A e. RR* /\ B e. RR* /\ A < B ) /\ ( B +e -e A ) e. RR ) -> ( ( B +e +oo ) e. RR <-> +oo e. RR ) ) |
| 19 |
9 18
|
mtbiri |
|- ( ( ( A e. RR* /\ B e. RR* /\ A < B ) /\ ( B +e -e A ) e. RR ) -> -. ( B +e +oo ) e. RR ) |
| 20 |
|
ngtmnft |
|- ( A e. RR* -> ( A = -oo <-> -. -oo < A ) ) |
| 21 |
6 20
|
syl |
|- ( ( ( A e. RR* /\ B e. RR* /\ A < B ) /\ ( B +e -e A ) e. RR ) -> ( A = -oo <-> -. -oo < A ) ) |
| 22 |
|
simpr |
|- ( ( ( A e. RR* /\ B e. RR* /\ A < B ) /\ ( B +e -e A ) e. RR ) -> ( B +e -e A ) e. RR ) |
| 23 |
|
xnegeq |
|- ( A = -oo -> -e A = -e -oo ) |
| 24 |
|
xnegmnf |
|- -e -oo = +oo |
| 25 |
23 24
|
eqtrdi |
|- ( A = -oo -> -e A = +oo ) |
| 26 |
25
|
oveq2d |
|- ( A = -oo -> ( B +e -e A ) = ( B +e +oo ) ) |
| 27 |
26
|
eleq1d |
|- ( A = -oo -> ( ( B +e -e A ) e. RR <-> ( B +e +oo ) e. RR ) ) |
| 28 |
22 27
|
syl5ibcom |
|- ( ( ( A e. RR* /\ B e. RR* /\ A < B ) /\ ( B +e -e A ) e. RR ) -> ( A = -oo -> ( B +e +oo ) e. RR ) ) |
| 29 |
21 28
|
sylbird |
|- ( ( ( A e. RR* /\ B e. RR* /\ A < B ) /\ ( B +e -e A ) e. RR ) -> ( -. -oo < A -> ( B +e +oo ) e. RR ) ) |
| 30 |
19 29
|
mt3d |
|- ( ( ( A e. RR* /\ B e. RR* /\ A < B ) /\ ( B +e -e A ) e. RR ) -> -oo < A ) |
| 31 |
|
xrre2 |
|- ( ( ( -oo e. RR* /\ A e. RR* /\ B e. RR* ) /\ ( -oo < A /\ A < B ) ) -> A e. RR ) |
| 32 |
5 6 7 30 12 31
|
syl32anc |
|- ( ( ( A e. RR* /\ B e. RR* /\ A < B ) /\ ( B +e -e A ) e. RR ) -> A e. RR ) |
| 33 |
|
pnfxr |
|- +oo e. RR* |
| 34 |
33
|
a1i |
|- ( ( ( A e. RR* /\ B e. RR* /\ A < B ) /\ ( B +e -e A ) e. RR ) -> +oo e. RR* ) |
| 35 |
6
|
xnegcld |
|- ( ( ( A e. RR* /\ B e. RR* /\ A < B ) /\ ( B +e -e A ) e. RR ) -> -e A e. RR* ) |
| 36 |
|
xnegpnf |
|- -e +oo = -oo |
| 37 |
|
pnfge |
|- ( B e. RR* -> B <_ +oo ) |
| 38 |
7 37
|
syl |
|- ( ( ( A e. RR* /\ B e. RR* /\ A < B ) /\ ( B +e -e A ) e. RR ) -> B <_ +oo ) |
| 39 |
6 7 34 12 38
|
xrltletrd |
|- ( ( ( A e. RR* /\ B e. RR* /\ A < B ) /\ ( B +e -e A ) e. RR ) -> A < +oo ) |
| 40 |
|
xltnegi |
|- ( ( A e. RR* /\ +oo e. RR* /\ A < +oo ) -> -e +oo < -e A ) |
| 41 |
6 34 39 40
|
syl3anc |
|- ( ( ( A e. RR* /\ B e. RR* /\ A < B ) /\ ( B +e -e A ) e. RR ) -> -e +oo < -e A ) |
| 42 |
36 41
|
eqbrtrrid |
|- ( ( ( A e. RR* /\ B e. RR* /\ A < B ) /\ ( B +e -e A ) e. RR ) -> -oo < -e A ) |
| 43 |
|
xrltne |
|- ( ( -oo e. RR* /\ -e A e. RR* /\ -oo < -e A ) -> -e A =/= -oo ) |
| 44 |
5 35 42 43
|
syl3anc |
|- ( ( ( A e. RR* /\ B e. RR* /\ A < B ) /\ ( B +e -e A ) e. RR ) -> -e A =/= -oo ) |
| 45 |
|
xaddpnf2 |
|- ( ( -e A e. RR* /\ -e A =/= -oo ) -> ( +oo +e -e A ) = +oo ) |
| 46 |
35 44 45
|
syl2anc |
|- ( ( ( A e. RR* /\ B e. RR* /\ A < B ) /\ ( B +e -e A ) e. RR ) -> ( +oo +e -e A ) = +oo ) |
| 47 |
46
|
eleq1d |
|- ( ( ( A e. RR* /\ B e. RR* /\ A < B ) /\ ( B +e -e A ) e. RR ) -> ( ( +oo +e -e A ) e. RR <-> +oo e. RR ) ) |
| 48 |
9 47
|
mtbiri |
|- ( ( ( A e. RR* /\ B e. RR* /\ A < B ) /\ ( B +e -e A ) e. RR ) -> -. ( +oo +e -e A ) e. RR ) |
| 49 |
|
nltpnft |
|- ( B e. RR* -> ( B = +oo <-> -. B < +oo ) ) |
| 50 |
7 49
|
syl |
|- ( ( ( A e. RR* /\ B e. RR* /\ A < B ) /\ ( B +e -e A ) e. RR ) -> ( B = +oo <-> -. B < +oo ) ) |
| 51 |
|
oveq1 |
|- ( B = +oo -> ( B +e -e A ) = ( +oo +e -e A ) ) |
| 52 |
51
|
eleq1d |
|- ( B = +oo -> ( ( B +e -e A ) e. RR <-> ( +oo +e -e A ) e. RR ) ) |
| 53 |
22 52
|
syl5ibcom |
|- ( ( ( A e. RR* /\ B e. RR* /\ A < B ) /\ ( B +e -e A ) e. RR ) -> ( B = +oo -> ( +oo +e -e A ) e. RR ) ) |
| 54 |
50 53
|
sylbird |
|- ( ( ( A e. RR* /\ B e. RR* /\ A < B ) /\ ( B +e -e A ) e. RR ) -> ( -. B < +oo -> ( +oo +e -e A ) e. RR ) ) |
| 55 |
48 54
|
mt3d |
|- ( ( ( A e. RR* /\ B e. RR* /\ A < B ) /\ ( B +e -e A ) e. RR ) -> B < +oo ) |
| 56 |
|
xrre2 |
|- ( ( ( A e. RR* /\ B e. RR* /\ +oo e. RR* ) /\ ( A < B /\ B < +oo ) ) -> B e. RR ) |
| 57 |
6 7 34 12 55 56
|
syl32anc |
|- ( ( ( A e. RR* /\ B e. RR* /\ A < B ) /\ ( B +e -e A ) e. RR ) -> B e. RR ) |
| 58 |
32 57
|
jca |
|- ( ( ( A e. RR* /\ B e. RR* /\ A < B ) /\ ( B +e -e A ) e. RR ) -> ( A e. RR /\ B e. RR ) ) |
| 59 |
58
|
ex |
|- ( ( A e. RR* /\ B e. RR* /\ A < B ) -> ( ( B +e -e A ) e. RR -> ( A e. RR /\ B e. RR ) ) ) |
| 60 |
59
|
3expia |
|- ( ( A e. RR* /\ B e. RR* ) -> ( A < B -> ( ( B +e -e A ) e. RR -> ( A e. RR /\ B e. RR ) ) ) ) |
| 61 |
60
|
3adant3 |
|- ( ( A e. RR* /\ B e. RR* /\ A <_ B ) -> ( A < B -> ( ( B +e -e A ) e. RR -> ( A e. RR /\ B e. RR ) ) ) ) |
| 62 |
3 61
|
sylbird |
|- ( ( A e. RR* /\ B e. RR* /\ A <_ B ) -> ( B =/= A -> ( ( B +e -e A ) e. RR -> ( A e. RR /\ B e. RR ) ) ) ) |
| 63 |
2 62
|
biimtrid |
|- ( ( A e. RR* /\ B e. RR* /\ A <_ B ) -> ( A =/= B -> ( ( B +e -e A ) e. RR -> ( A e. RR /\ B e. RR ) ) ) ) |
| 64 |
63
|
3exp |
|- ( A e. RR* -> ( B e. RR* -> ( A <_ B -> ( A =/= B -> ( ( B +e -e A ) e. RR -> ( A e. RR /\ B e. RR ) ) ) ) ) ) |
| 65 |
64
|
com34 |
|- ( A e. RR* -> ( B e. RR* -> ( A =/= B -> ( A <_ B -> ( ( B +e -e A ) e. RR -> ( A e. RR /\ B e. RR ) ) ) ) ) ) |
| 66 |
65
|
3imp1 |
|- ( ( ( A e. RR* /\ B e. RR* /\ A =/= B ) /\ A <_ B ) -> ( ( B +e -e A ) e. RR -> ( A e. RR /\ B e. RR ) ) ) |