Step |
Hyp |
Ref |
Expression |
1 |
|
xrsds.d |
|- D = ( dist ` RR*s ) |
2 |
|
rexr |
|- ( A e. RR -> A e. RR* ) |
3 |
|
rexr |
|- ( B e. RR -> B e. RR* ) |
4 |
1
|
xrsdsval |
|- ( ( A e. RR* /\ B e. RR* ) -> ( A D B ) = if ( A <_ B , ( B +e -e A ) , ( A +e -e B ) ) ) |
5 |
2 3 4
|
syl2an |
|- ( ( A e. RR /\ B e. RR ) -> ( A D B ) = if ( A <_ B , ( B +e -e A ) , ( A +e -e B ) ) ) |
6 |
|
rexsub |
|- ( ( B e. RR /\ A e. RR ) -> ( B +e -e A ) = ( B - A ) ) |
7 |
6
|
ancoms |
|- ( ( A e. RR /\ B e. RR ) -> ( B +e -e A ) = ( B - A ) ) |
8 |
7
|
adantr |
|- ( ( ( A e. RR /\ B e. RR ) /\ A <_ B ) -> ( B +e -e A ) = ( B - A ) ) |
9 |
|
abssuble0 |
|- ( ( A e. RR /\ B e. RR /\ A <_ B ) -> ( abs ` ( A - B ) ) = ( B - A ) ) |
10 |
9
|
3expa |
|- ( ( ( A e. RR /\ B e. RR ) /\ A <_ B ) -> ( abs ` ( A - B ) ) = ( B - A ) ) |
11 |
8 10
|
eqtr4d |
|- ( ( ( A e. RR /\ B e. RR ) /\ A <_ B ) -> ( B +e -e A ) = ( abs ` ( A - B ) ) ) |
12 |
|
rexsub |
|- ( ( A e. RR /\ B e. RR ) -> ( A +e -e B ) = ( A - B ) ) |
13 |
12
|
adantr |
|- ( ( ( A e. RR /\ B e. RR ) /\ -. A <_ B ) -> ( A +e -e B ) = ( A - B ) ) |
14 |
|
letric |
|- ( ( A e. RR /\ B e. RR ) -> ( A <_ B \/ B <_ A ) ) |
15 |
14
|
orcanai |
|- ( ( ( A e. RR /\ B e. RR ) /\ -. A <_ B ) -> B <_ A ) |
16 |
|
abssubge0 |
|- ( ( B e. RR /\ A e. RR /\ B <_ A ) -> ( abs ` ( A - B ) ) = ( A - B ) ) |
17 |
16
|
3com12 |
|- ( ( A e. RR /\ B e. RR /\ B <_ A ) -> ( abs ` ( A - B ) ) = ( A - B ) ) |
18 |
17
|
3expa |
|- ( ( ( A e. RR /\ B e. RR ) /\ B <_ A ) -> ( abs ` ( A - B ) ) = ( A - B ) ) |
19 |
15 18
|
syldan |
|- ( ( ( A e. RR /\ B e. RR ) /\ -. A <_ B ) -> ( abs ` ( A - B ) ) = ( A - B ) ) |
20 |
13 19
|
eqtr4d |
|- ( ( ( A e. RR /\ B e. RR ) /\ -. A <_ B ) -> ( A +e -e B ) = ( abs ` ( A - B ) ) ) |
21 |
11 20
|
ifeqda |
|- ( ( A e. RR /\ B e. RR ) -> if ( A <_ B , ( B +e -e A ) , ( A +e -e B ) ) = ( abs ` ( A - B ) ) ) |
22 |
5 21
|
eqtrd |
|- ( ( A e. RR /\ B e. RR ) -> ( A D B ) = ( abs ` ( A - B ) ) ) |