Step |
Hyp |
Ref |
Expression |
1 |
|
xrsds.d |
|- D = ( dist ` RR*s ) |
2 |
|
breq12 |
|- ( ( x = A /\ y = B ) -> ( x <_ y <-> A <_ B ) ) |
3 |
|
id |
|- ( y = B -> y = B ) |
4 |
|
xnegeq |
|- ( x = A -> -e x = -e A ) |
5 |
3 4
|
oveqan12rd |
|- ( ( x = A /\ y = B ) -> ( y +e -e x ) = ( B +e -e A ) ) |
6 |
|
id |
|- ( x = A -> x = A ) |
7 |
|
xnegeq |
|- ( y = B -> -e y = -e B ) |
8 |
6 7
|
oveqan12d |
|- ( ( x = A /\ y = B ) -> ( x +e -e y ) = ( A +e -e B ) ) |
9 |
2 5 8
|
ifbieq12d |
|- ( ( x = A /\ y = B ) -> if ( x <_ y , ( y +e -e x ) , ( x +e -e y ) ) = if ( A <_ B , ( B +e -e A ) , ( A +e -e B ) ) ) |
10 |
1
|
xrsds |
|- D = ( x e. RR* , y e. RR* |-> if ( x <_ y , ( y +e -e x ) , ( x +e -e y ) ) ) |
11 |
|
ovex |
|- ( B +e -e A ) e. _V |
12 |
|
ovex |
|- ( A +e -e B ) e. _V |
13 |
11 12
|
ifex |
|- if ( A <_ B , ( B +e -e A ) , ( A +e -e B ) ) e. _V |
14 |
9 10 13
|
ovmpoa |
|- ( ( A e. RR* /\ B e. RR* ) -> ( A D B ) = if ( A <_ B , ( B +e -e A ) , ( A +e -e B ) ) ) |