Step |
Hyp |
Ref |
Expression |
1 |
|
eqid |
|- ( mulGrp ` RR*s ) = ( mulGrp ` RR*s ) |
2 |
|
xrsbas |
|- RR* = ( Base ` RR*s ) |
3 |
1 2
|
mgpbas |
|- RR* = ( Base ` ( mulGrp ` RR*s ) ) |
4 |
3
|
a1i |
|- ( T. -> RR* = ( Base ` ( mulGrp ` RR*s ) ) ) |
5 |
|
xrsmul |
|- *e = ( .r ` RR*s ) |
6 |
1 5
|
mgpplusg |
|- *e = ( +g ` ( mulGrp ` RR*s ) ) |
7 |
6
|
a1i |
|- ( T. -> *e = ( +g ` ( mulGrp ` RR*s ) ) ) |
8 |
|
xmulcl |
|- ( ( x e. RR* /\ y e. RR* ) -> ( x *e y ) e. RR* ) |
9 |
8
|
3adant1 |
|- ( ( T. /\ x e. RR* /\ y e. RR* ) -> ( x *e y ) e. RR* ) |
10 |
|
xmulass |
|- ( ( x e. RR* /\ y e. RR* /\ z e. RR* ) -> ( ( x *e y ) *e z ) = ( x *e ( y *e z ) ) ) |
11 |
10
|
adantl |
|- ( ( T. /\ ( x e. RR* /\ y e. RR* /\ z e. RR* ) ) -> ( ( x *e y ) *e z ) = ( x *e ( y *e z ) ) ) |
12 |
|
1re |
|- 1 e. RR |
13 |
|
rexr |
|- ( 1 e. RR -> 1 e. RR* ) |
14 |
12 13
|
mp1i |
|- ( T. -> 1 e. RR* ) |
15 |
|
xmulid2 |
|- ( x e. RR* -> ( 1 *e x ) = x ) |
16 |
15
|
adantl |
|- ( ( T. /\ x e. RR* ) -> ( 1 *e x ) = x ) |
17 |
|
xmulid1 |
|- ( x e. RR* -> ( x *e 1 ) = x ) |
18 |
17
|
adantl |
|- ( ( T. /\ x e. RR* ) -> ( x *e 1 ) = x ) |
19 |
4 7 9 11 14 16 18
|
ismndd |
|- ( T. -> ( mulGrp ` RR*s ) e. Mnd ) |
20 |
|
xmulcom |
|- ( ( x e. RR* /\ y e. RR* ) -> ( x *e y ) = ( y *e x ) ) |
21 |
20
|
3adant1 |
|- ( ( T. /\ x e. RR* /\ y e. RR* ) -> ( x *e y ) = ( y *e x ) ) |
22 |
4 7 19 21
|
iscmnd |
|- ( T. -> ( mulGrp ` RR*s ) e. CMnd ) |
23 |
22
|
mptru |
|- ( mulGrp ` RR*s ) e. CMnd |