Metamath Proof Explorer


Theorem xrsmgm

Description: The "additive group" of the extended reals is a magma. (Contributed by AV, 30-Jan-2020)

Ref Expression
Assertion xrsmgm
|- RR*s e. Mgm

Proof

Step Hyp Ref Expression
1 xaddcl
 |-  ( ( x e. RR* /\ y e. RR* ) -> ( x +e y ) e. RR* )
2 1 rgen2
 |-  A. x e. RR* A. y e. RR* ( x +e y ) e. RR*
3 0xr
 |-  0 e. RR*
4 xrsbas
 |-  RR* = ( Base ` RR*s )
5 xrsadd
 |-  +e = ( +g ` RR*s )
6 4 5 ismgmn0
 |-  ( 0 e. RR* -> ( RR*s e. Mgm <-> A. x e. RR* A. y e. RR* ( x +e y ) e. RR* ) )
7 3 6 ax-mp
 |-  ( RR*s e. Mgm <-> A. x e. RR* A. y e. RR* ( x +e y ) e. RR* )
8 2 7 mpbir
 |-  RR*s e. Mgm