Metamath Proof Explorer


Theorem xrsmgmdifsgrp

Description: The "additive group" of the extended reals is a magma but not a semigroup, and therefore also not a monoid nor a group, in contrast to the "multiplicative group", see xrsmcmn . (Contributed by AV, 30-Jan-2020)

Ref Expression
Assertion xrsmgmdifsgrp
|- RR*s e. ( Mgm \ Smgrp )

Proof

Step Hyp Ref Expression
1 xrsmgm
 |-  RR*s e. Mgm
2 xrsnsgrp
 |-  RR*s e/ Smgrp
3 2 neli
 |-  -. RR*s e. Smgrp
4 eldif
 |-  ( RR*s e. ( Mgm \ Smgrp ) <-> ( RR*s e. Mgm /\ -. RR*s e. Smgrp ) )
5 1 3 4 mpbir2an
 |-  RR*s e. ( Mgm \ Smgrp )