Description: The extended real numbers are unbounded above. (Contributed by Mario Carneiro, 7-May-2016)
Ref | Expression | ||
---|---|---|---|
Assertion | xrsup | |- sup ( RR* , RR* , < ) = +oo |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ssid | |- RR* C_ RR* |
|
2 | pnfxr | |- +oo e. RR* |
|
3 | supxrpnf | |- ( ( RR* C_ RR* /\ +oo e. RR* ) -> sup ( RR* , RR* , < ) = +oo ) |
|
4 | 1 2 3 | mp2an | |- sup ( RR* , RR* , < ) = +oo |