| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							xrsupssd.1 | 
							 |-  ( ph -> B C_ C )  | 
						
						
							| 2 | 
							
								
							 | 
							xrsupssd.2 | 
							 |-  ( ph -> C C_ RR* )  | 
						
						
							| 3 | 
							
								
							 | 
							xrltso | 
							 |-  < Or RR*  | 
						
						
							| 4 | 
							
								3
							 | 
							a1i | 
							 |-  ( ph -> < Or RR* )  | 
						
						
							| 5 | 
							
								1 2
							 | 
							sstrd | 
							 |-  ( ph -> B C_ RR* )  | 
						
						
							| 6 | 
							
								
							 | 
							xrsupss | 
							 |-  ( B C_ RR* -> E. x e. RR* ( A. y e. B -. x < y /\ A. y e. RR* ( y < x -> E. z e. B y < z ) ) )  | 
						
						
							| 7 | 
							
								5 6
							 | 
							syl | 
							 |-  ( ph -> E. x e. RR* ( A. y e. B -. x < y /\ A. y e. RR* ( y < x -> E. z e. B y < z ) ) )  | 
						
						
							| 8 | 
							
								
							 | 
							xrsupss | 
							 |-  ( C C_ RR* -> E. x e. RR* ( A. y e. C -. x < y /\ A. y e. RR* ( y < x -> E. z e. C y < z ) ) )  | 
						
						
							| 9 | 
							
								2 8
							 | 
							syl | 
							 |-  ( ph -> E. x e. RR* ( A. y e. C -. x < y /\ A. y e. RR* ( y < x -> E. z e. C y < z ) ) )  | 
						
						
							| 10 | 
							
								4 1 2 7 9
							 | 
							supssd | 
							 |-  ( ph -> -. sup ( C , RR* , < ) < sup ( B , RR* , < ) )  | 
						
						
							| 11 | 
							
								4 7
							 | 
							supcl | 
							 |-  ( ph -> sup ( B , RR* , < ) e. RR* )  | 
						
						
							| 12 | 
							
								4 9
							 | 
							supcl | 
							 |-  ( ph -> sup ( C , RR* , < ) e. RR* )  | 
						
						
							| 13 | 
							
								
							 | 
							xrlenlt | 
							 |-  ( ( sup ( B , RR* , < ) e. RR* /\ sup ( C , RR* , < ) e. RR* ) -> ( sup ( B , RR* , < ) <_ sup ( C , RR* , < ) <-> -. sup ( C , RR* , < ) < sup ( B , RR* , < ) ) )  | 
						
						
							| 14 | 
							
								11 12 13
							 | 
							syl2anc | 
							 |-  ( ph -> ( sup ( B , RR* , < ) <_ sup ( C , RR* , < ) <-> -. sup ( C , RR* , < ) < sup ( B , RR* , < ) ) )  | 
						
						
							| 15 | 
							
								10 14
							 | 
							mpbird | 
							 |-  ( ph -> sup ( B , RR* , < ) <_ sup ( C , RR* , < ) )  |