Metamath Proof Explorer


Theorem xrtgcntopre

Description: The standard topologies on the extended reals and on the complex numbers, coincide when restricted to the reals. (Contributed by Glauco Siliprandi, 5-Feb-2022)

Ref Expression
Assertion xrtgcntopre
|- ( ( ordTop ` <_ ) |`t RR ) = ( ( TopOpen ` CCfld ) |`t RR )

Proof

Step Hyp Ref Expression
1 eqid
 |-  ( ( ordTop ` <_ ) |`t RR ) = ( ( ordTop ` <_ ) |`t RR )
2 1 xrtgioo
 |-  ( topGen ` ran (,) ) = ( ( ordTop ` <_ ) |`t RR )
3 eqid
 |-  ( TopOpen ` CCfld ) = ( TopOpen ` CCfld )
4 3 tgioo2
 |-  ( topGen ` ran (,) ) = ( ( TopOpen ` CCfld ) |`t RR )
5 2 4 eqtr3i
 |-  ( ( ordTop ` <_ ) |`t RR ) = ( ( TopOpen ` CCfld ) |`t RR )