| Step |
Hyp |
Ref |
Expression |
| 1 |
|
elxr |
|- ( B e. RR* <-> ( B e. RR \/ B = +oo \/ B = -oo ) ) |
| 2 |
|
0xr |
|- 0 e. RR* |
| 3 |
|
rexr |
|- ( B e. RR -> B e. RR* ) |
| 4 |
|
xnegcl |
|- ( B e. RR* -> -e B e. RR* ) |
| 5 |
|
xaddcl |
|- ( ( A e. RR* /\ -e B e. RR* ) -> ( A +e -e B ) e. RR* ) |
| 6 |
4 5
|
sylan2 |
|- ( ( A e. RR* /\ B e. RR* ) -> ( A +e -e B ) e. RR* ) |
| 7 |
3 6
|
sylan2 |
|- ( ( A e. RR* /\ B e. RR ) -> ( A +e -e B ) e. RR* ) |
| 8 |
|
simpr |
|- ( ( A e. RR* /\ B e. RR ) -> B e. RR ) |
| 9 |
|
xleadd1 |
|- ( ( 0 e. RR* /\ ( A +e -e B ) e. RR* /\ B e. RR ) -> ( 0 <_ ( A +e -e B ) <-> ( 0 +e B ) <_ ( ( A +e -e B ) +e B ) ) ) |
| 10 |
2 7 8 9
|
mp3an2i |
|- ( ( A e. RR* /\ B e. RR ) -> ( 0 <_ ( A +e -e B ) <-> ( 0 +e B ) <_ ( ( A +e -e B ) +e B ) ) ) |
| 11 |
3
|
adantl |
|- ( ( A e. RR* /\ B e. RR ) -> B e. RR* ) |
| 12 |
|
xaddlid |
|- ( B e. RR* -> ( 0 +e B ) = B ) |
| 13 |
11 12
|
syl |
|- ( ( A e. RR* /\ B e. RR ) -> ( 0 +e B ) = B ) |
| 14 |
|
xnpcan |
|- ( ( A e. RR* /\ B e. RR ) -> ( ( A +e -e B ) +e B ) = A ) |
| 15 |
13 14
|
breq12d |
|- ( ( A e. RR* /\ B e. RR ) -> ( ( 0 +e B ) <_ ( ( A +e -e B ) +e B ) <-> B <_ A ) ) |
| 16 |
10 15
|
bitrd |
|- ( ( A e. RR* /\ B e. RR ) -> ( 0 <_ ( A +e -e B ) <-> B <_ A ) ) |
| 17 |
|
pnfxr |
|- +oo e. RR* |
| 18 |
|
xrletri3 |
|- ( ( A e. RR* /\ +oo e. RR* ) -> ( A = +oo <-> ( A <_ +oo /\ +oo <_ A ) ) ) |
| 19 |
17 18
|
mpan2 |
|- ( A e. RR* -> ( A = +oo <-> ( A <_ +oo /\ +oo <_ A ) ) ) |
| 20 |
|
mnflt0 |
|- -oo < 0 |
| 21 |
|
mnfxr |
|- -oo e. RR* |
| 22 |
|
xrltnle |
|- ( ( -oo e. RR* /\ 0 e. RR* ) -> ( -oo < 0 <-> -. 0 <_ -oo ) ) |
| 23 |
21 2 22
|
mp2an |
|- ( -oo < 0 <-> -. 0 <_ -oo ) |
| 24 |
20 23
|
mpbi |
|- -. 0 <_ -oo |
| 25 |
|
xaddmnf1 |
|- ( ( A e. RR* /\ A =/= +oo ) -> ( A +e -oo ) = -oo ) |
| 26 |
25
|
breq2d |
|- ( ( A e. RR* /\ A =/= +oo ) -> ( 0 <_ ( A +e -oo ) <-> 0 <_ -oo ) ) |
| 27 |
24 26
|
mtbiri |
|- ( ( A e. RR* /\ A =/= +oo ) -> -. 0 <_ ( A +e -oo ) ) |
| 28 |
27
|
ex |
|- ( A e. RR* -> ( A =/= +oo -> -. 0 <_ ( A +e -oo ) ) ) |
| 29 |
28
|
necon4ad |
|- ( A e. RR* -> ( 0 <_ ( A +e -oo ) -> A = +oo ) ) |
| 30 |
|
0le0 |
|- 0 <_ 0 |
| 31 |
|
oveq1 |
|- ( A = +oo -> ( A +e -oo ) = ( +oo +e -oo ) ) |
| 32 |
|
pnfaddmnf |
|- ( +oo +e -oo ) = 0 |
| 33 |
31 32
|
eqtrdi |
|- ( A = +oo -> ( A +e -oo ) = 0 ) |
| 34 |
30 33
|
breqtrrid |
|- ( A = +oo -> 0 <_ ( A +e -oo ) ) |
| 35 |
29 34
|
impbid1 |
|- ( A e. RR* -> ( 0 <_ ( A +e -oo ) <-> A = +oo ) ) |
| 36 |
|
pnfge |
|- ( A e. RR* -> A <_ +oo ) |
| 37 |
36
|
biantrurd |
|- ( A e. RR* -> ( +oo <_ A <-> ( A <_ +oo /\ +oo <_ A ) ) ) |
| 38 |
19 35 37
|
3bitr4d |
|- ( A e. RR* -> ( 0 <_ ( A +e -oo ) <-> +oo <_ A ) ) |
| 39 |
38
|
adantr |
|- ( ( A e. RR* /\ B = +oo ) -> ( 0 <_ ( A +e -oo ) <-> +oo <_ A ) ) |
| 40 |
|
xnegeq |
|- ( B = +oo -> -e B = -e +oo ) |
| 41 |
|
xnegpnf |
|- -e +oo = -oo |
| 42 |
40 41
|
eqtrdi |
|- ( B = +oo -> -e B = -oo ) |
| 43 |
42
|
adantl |
|- ( ( A e. RR* /\ B = +oo ) -> -e B = -oo ) |
| 44 |
43
|
oveq2d |
|- ( ( A e. RR* /\ B = +oo ) -> ( A +e -e B ) = ( A +e -oo ) ) |
| 45 |
44
|
breq2d |
|- ( ( A e. RR* /\ B = +oo ) -> ( 0 <_ ( A +e -e B ) <-> 0 <_ ( A +e -oo ) ) ) |
| 46 |
|
breq1 |
|- ( B = +oo -> ( B <_ A <-> +oo <_ A ) ) |
| 47 |
46
|
adantl |
|- ( ( A e. RR* /\ B = +oo ) -> ( B <_ A <-> +oo <_ A ) ) |
| 48 |
39 45 47
|
3bitr4d |
|- ( ( A e. RR* /\ B = +oo ) -> ( 0 <_ ( A +e -e B ) <-> B <_ A ) ) |
| 49 |
|
oveq1 |
|- ( A = -oo -> ( A +e +oo ) = ( -oo +e +oo ) ) |
| 50 |
|
mnfaddpnf |
|- ( -oo +e +oo ) = 0 |
| 51 |
49 50
|
eqtrdi |
|- ( A = -oo -> ( A +e +oo ) = 0 ) |
| 52 |
51
|
adantl |
|- ( ( A e. RR* /\ A = -oo ) -> ( A +e +oo ) = 0 ) |
| 53 |
30 52
|
breqtrrid |
|- ( ( A e. RR* /\ A = -oo ) -> 0 <_ ( A +e +oo ) ) |
| 54 |
|
0lepnf |
|- 0 <_ +oo |
| 55 |
|
xaddpnf1 |
|- ( ( A e. RR* /\ A =/= -oo ) -> ( A +e +oo ) = +oo ) |
| 56 |
54 55
|
breqtrrid |
|- ( ( A e. RR* /\ A =/= -oo ) -> 0 <_ ( A +e +oo ) ) |
| 57 |
53 56
|
pm2.61dane |
|- ( A e. RR* -> 0 <_ ( A +e +oo ) ) |
| 58 |
|
mnfle |
|- ( A e. RR* -> -oo <_ A ) |
| 59 |
57 58
|
2thd |
|- ( A e. RR* -> ( 0 <_ ( A +e +oo ) <-> -oo <_ A ) ) |
| 60 |
59
|
adantr |
|- ( ( A e. RR* /\ B = -oo ) -> ( 0 <_ ( A +e +oo ) <-> -oo <_ A ) ) |
| 61 |
|
xnegeq |
|- ( B = -oo -> -e B = -e -oo ) |
| 62 |
|
xnegmnf |
|- -e -oo = +oo |
| 63 |
61 62
|
eqtrdi |
|- ( B = -oo -> -e B = +oo ) |
| 64 |
63
|
adantl |
|- ( ( A e. RR* /\ B = -oo ) -> -e B = +oo ) |
| 65 |
64
|
oveq2d |
|- ( ( A e. RR* /\ B = -oo ) -> ( A +e -e B ) = ( A +e +oo ) ) |
| 66 |
65
|
breq2d |
|- ( ( A e. RR* /\ B = -oo ) -> ( 0 <_ ( A +e -e B ) <-> 0 <_ ( A +e +oo ) ) ) |
| 67 |
|
breq1 |
|- ( B = -oo -> ( B <_ A <-> -oo <_ A ) ) |
| 68 |
67
|
adantl |
|- ( ( A e. RR* /\ B = -oo ) -> ( B <_ A <-> -oo <_ A ) ) |
| 69 |
60 66 68
|
3bitr4d |
|- ( ( A e. RR* /\ B = -oo ) -> ( 0 <_ ( A +e -e B ) <-> B <_ A ) ) |
| 70 |
16 48 69
|
3jaodan |
|- ( ( A e. RR* /\ ( B e. RR \/ B = +oo \/ B = -oo ) ) -> ( 0 <_ ( A +e -e B ) <-> B <_ A ) ) |
| 71 |
1 70
|
sylan2b |
|- ( ( A e. RR* /\ B e. RR* ) -> ( 0 <_ ( A +e -e B ) <-> B <_ A ) ) |