| Step | Hyp | Ref | Expression | 
						
							| 1 |  | eltpi |  |-  ( Z e. { -u 1 , 0 , 1 } -> ( Z = -u 1 \/ Z = 0 \/ Z = 1 ) ) | 
						
							| 2 |  | fveq2 |  |-  ( Z = -u 1 -> ( abs ` Z ) = ( abs ` -u 1 ) ) | 
						
							| 3 |  | ax-1cn |  |-  1 e. CC | 
						
							| 4 | 3 | absnegi |  |-  ( abs ` -u 1 ) = ( abs ` 1 ) | 
						
							| 5 |  | abs1 |  |-  ( abs ` 1 ) = 1 | 
						
							| 6 | 4 5 | eqtri |  |-  ( abs ` -u 1 ) = 1 | 
						
							| 7 |  | 1le1 |  |-  1 <_ 1 | 
						
							| 8 | 6 7 | eqbrtri |  |-  ( abs ` -u 1 ) <_ 1 | 
						
							| 9 | 2 8 | eqbrtrdi |  |-  ( Z = -u 1 -> ( abs ` Z ) <_ 1 ) | 
						
							| 10 |  | fveq2 |  |-  ( Z = 0 -> ( abs ` Z ) = ( abs ` 0 ) ) | 
						
							| 11 |  | abs0 |  |-  ( abs ` 0 ) = 0 | 
						
							| 12 |  | 0le1 |  |-  0 <_ 1 | 
						
							| 13 | 11 12 | eqbrtri |  |-  ( abs ` 0 ) <_ 1 | 
						
							| 14 | 10 13 | eqbrtrdi |  |-  ( Z = 0 -> ( abs ` Z ) <_ 1 ) | 
						
							| 15 |  | fveq2 |  |-  ( Z = 1 -> ( abs ` Z ) = ( abs ` 1 ) ) | 
						
							| 16 | 5 7 | eqbrtri |  |-  ( abs ` 1 ) <_ 1 | 
						
							| 17 | 15 16 | eqbrtrdi |  |-  ( Z = 1 -> ( abs ` Z ) <_ 1 ) | 
						
							| 18 | 9 14 17 | 3jaoi |  |-  ( ( Z = -u 1 \/ Z = 0 \/ Z = 1 ) -> ( abs ` Z ) <_ 1 ) | 
						
							| 19 | 1 18 | syl |  |-  ( Z e. { -u 1 , 0 , 1 } -> ( abs ` Z ) <_ 1 ) | 
						
							| 20 |  | zre |  |-  ( Z e. ZZ -> Z e. RR ) | 
						
							| 21 |  | 1red |  |-  ( Z e. ZZ -> 1 e. RR ) | 
						
							| 22 | 20 21 | absled |  |-  ( Z e. ZZ -> ( ( abs ` Z ) <_ 1 <-> ( -u 1 <_ Z /\ Z <_ 1 ) ) ) | 
						
							| 23 |  | elz |  |-  ( Z e. ZZ <-> ( Z e. RR /\ ( Z = 0 \/ Z e. NN \/ -u Z e. NN ) ) ) | 
						
							| 24 |  | 3mix2 |  |-  ( Z = 0 -> ( Z = -u 1 \/ Z = 0 \/ Z = 1 ) ) | 
						
							| 25 | 24 | a1d |  |-  ( Z = 0 -> ( ( Z e. RR /\ ( -u 1 <_ Z /\ Z <_ 1 ) ) -> ( Z = -u 1 \/ Z = 0 \/ Z = 1 ) ) ) | 
						
							| 26 |  | nnle1eq1 |  |-  ( Z e. NN -> ( Z <_ 1 <-> Z = 1 ) ) | 
						
							| 27 | 26 | biimpac |  |-  ( ( Z <_ 1 /\ Z e. NN ) -> Z = 1 ) | 
						
							| 28 | 27 | 3mix3d |  |-  ( ( Z <_ 1 /\ Z e. NN ) -> ( Z = -u 1 \/ Z = 0 \/ Z = 1 ) ) | 
						
							| 29 | 28 | ex |  |-  ( Z <_ 1 -> ( Z e. NN -> ( Z = -u 1 \/ Z = 0 \/ Z = 1 ) ) ) | 
						
							| 30 | 29 | adantl |  |-  ( ( -u 1 <_ Z /\ Z <_ 1 ) -> ( Z e. NN -> ( Z = -u 1 \/ Z = 0 \/ Z = 1 ) ) ) | 
						
							| 31 | 30 | adantl |  |-  ( ( Z e. RR /\ ( -u 1 <_ Z /\ Z <_ 1 ) ) -> ( Z e. NN -> ( Z = -u 1 \/ Z = 0 \/ Z = 1 ) ) ) | 
						
							| 32 | 31 | com12 |  |-  ( Z e. NN -> ( ( Z e. RR /\ ( -u 1 <_ Z /\ Z <_ 1 ) ) -> ( Z = -u 1 \/ Z = 0 \/ Z = 1 ) ) ) | 
						
							| 33 |  | elnnz1 |  |-  ( -u Z e. NN <-> ( -u Z e. ZZ /\ 1 <_ -u Z ) ) | 
						
							| 34 |  | 1red |  |-  ( Z e. RR -> 1 e. RR ) | 
						
							| 35 |  | lenegcon2 |  |-  ( ( 1 e. RR /\ Z e. RR ) -> ( 1 <_ -u Z <-> Z <_ -u 1 ) ) | 
						
							| 36 | 34 35 | mpancom |  |-  ( Z e. RR -> ( 1 <_ -u Z <-> Z <_ -u 1 ) ) | 
						
							| 37 |  | neg1rr |  |-  -u 1 e. RR | 
						
							| 38 | 37 | a1i |  |-  ( Z e. RR -> -u 1 e. RR ) | 
						
							| 39 |  | id |  |-  ( Z e. RR -> Z e. RR ) | 
						
							| 40 | 38 39 | letri3d |  |-  ( Z e. RR -> ( -u 1 = Z <-> ( -u 1 <_ Z /\ Z <_ -u 1 ) ) ) | 
						
							| 41 |  | 3mix1 |  |-  ( Z = -u 1 -> ( Z = -u 1 \/ Z = 0 \/ Z = 1 ) ) | 
						
							| 42 | 41 | eqcoms |  |-  ( -u 1 = Z -> ( Z = -u 1 \/ Z = 0 \/ Z = 1 ) ) | 
						
							| 43 | 40 42 | biimtrrdi |  |-  ( Z e. RR -> ( ( -u 1 <_ Z /\ Z <_ -u 1 ) -> ( Z = -u 1 \/ Z = 0 \/ Z = 1 ) ) ) | 
						
							| 44 | 43 | com12 |  |-  ( ( -u 1 <_ Z /\ Z <_ -u 1 ) -> ( Z e. RR -> ( Z = -u 1 \/ Z = 0 \/ Z = 1 ) ) ) | 
						
							| 45 | 44 | ex |  |-  ( -u 1 <_ Z -> ( Z <_ -u 1 -> ( Z e. RR -> ( Z = -u 1 \/ Z = 0 \/ Z = 1 ) ) ) ) | 
						
							| 46 | 45 | adantr |  |-  ( ( -u 1 <_ Z /\ Z <_ 1 ) -> ( Z <_ -u 1 -> ( Z e. RR -> ( Z = -u 1 \/ Z = 0 \/ Z = 1 ) ) ) ) | 
						
							| 47 | 46 | com13 |  |-  ( Z e. RR -> ( Z <_ -u 1 -> ( ( -u 1 <_ Z /\ Z <_ 1 ) -> ( Z = -u 1 \/ Z = 0 \/ Z = 1 ) ) ) ) | 
						
							| 48 | 36 47 | sylbid |  |-  ( Z e. RR -> ( 1 <_ -u Z -> ( ( -u 1 <_ Z /\ Z <_ 1 ) -> ( Z = -u 1 \/ Z = 0 \/ Z = 1 ) ) ) ) | 
						
							| 49 | 48 | com12 |  |-  ( 1 <_ -u Z -> ( Z e. RR -> ( ( -u 1 <_ Z /\ Z <_ 1 ) -> ( Z = -u 1 \/ Z = 0 \/ Z = 1 ) ) ) ) | 
						
							| 50 | 49 | impd |  |-  ( 1 <_ -u Z -> ( ( Z e. RR /\ ( -u 1 <_ Z /\ Z <_ 1 ) ) -> ( Z = -u 1 \/ Z = 0 \/ Z = 1 ) ) ) | 
						
							| 51 | 50 | adantl |  |-  ( ( -u Z e. ZZ /\ 1 <_ -u Z ) -> ( ( Z e. RR /\ ( -u 1 <_ Z /\ Z <_ 1 ) ) -> ( Z = -u 1 \/ Z = 0 \/ Z = 1 ) ) ) | 
						
							| 52 | 33 51 | sylbi |  |-  ( -u Z e. NN -> ( ( Z e. RR /\ ( -u 1 <_ Z /\ Z <_ 1 ) ) -> ( Z = -u 1 \/ Z = 0 \/ Z = 1 ) ) ) | 
						
							| 53 | 25 32 52 | 3jaoi |  |-  ( ( Z = 0 \/ Z e. NN \/ -u Z e. NN ) -> ( ( Z e. RR /\ ( -u 1 <_ Z /\ Z <_ 1 ) ) -> ( Z = -u 1 \/ Z = 0 \/ Z = 1 ) ) ) | 
						
							| 54 | 53 | imp |  |-  ( ( ( Z = 0 \/ Z e. NN \/ -u Z e. NN ) /\ ( Z e. RR /\ ( -u 1 <_ Z /\ Z <_ 1 ) ) ) -> ( Z = -u 1 \/ Z = 0 \/ Z = 1 ) ) | 
						
							| 55 |  | eltpg |  |-  ( Z e. RR -> ( Z e. { -u 1 , 0 , 1 } <-> ( Z = -u 1 \/ Z = 0 \/ Z = 1 ) ) ) | 
						
							| 56 | 55 | adantr |  |-  ( ( Z e. RR /\ ( -u 1 <_ Z /\ Z <_ 1 ) ) -> ( Z e. { -u 1 , 0 , 1 } <-> ( Z = -u 1 \/ Z = 0 \/ Z = 1 ) ) ) | 
						
							| 57 | 56 | adantl |  |-  ( ( ( Z = 0 \/ Z e. NN \/ -u Z e. NN ) /\ ( Z e. RR /\ ( -u 1 <_ Z /\ Z <_ 1 ) ) ) -> ( Z e. { -u 1 , 0 , 1 } <-> ( Z = -u 1 \/ Z = 0 \/ Z = 1 ) ) ) | 
						
							| 58 | 54 57 | mpbird |  |-  ( ( ( Z = 0 \/ Z e. NN \/ -u Z e. NN ) /\ ( Z e. RR /\ ( -u 1 <_ Z /\ Z <_ 1 ) ) ) -> Z e. { -u 1 , 0 , 1 } ) | 
						
							| 59 | 58 | exp32 |  |-  ( ( Z = 0 \/ Z e. NN \/ -u Z e. NN ) -> ( Z e. RR -> ( ( -u 1 <_ Z /\ Z <_ 1 ) -> Z e. { -u 1 , 0 , 1 } ) ) ) | 
						
							| 60 | 59 | impcom |  |-  ( ( Z e. RR /\ ( Z = 0 \/ Z e. NN \/ -u Z e. NN ) ) -> ( ( -u 1 <_ Z /\ Z <_ 1 ) -> Z e. { -u 1 , 0 , 1 } ) ) | 
						
							| 61 | 23 60 | sylbi |  |-  ( Z e. ZZ -> ( ( -u 1 <_ Z /\ Z <_ 1 ) -> Z e. { -u 1 , 0 , 1 } ) ) | 
						
							| 62 | 22 61 | sylbid |  |-  ( Z e. ZZ -> ( ( abs ` Z ) <_ 1 -> Z e. { -u 1 , 0 , 1 } ) ) | 
						
							| 63 | 19 62 | impbid2 |  |-  ( Z e. ZZ -> ( Z e. { -u 1 , 0 , 1 } <-> ( abs ` Z ) <_ 1 ) ) |