Metamath Proof Explorer


Theorem zaddablx

Description: The integers are an Abelian group under addition. Note: This theorem has hard-coded structure indices for demonstration purposes. It is not intended for general use. Use zsubrg instead. (New usage is discouraged.) (Contributed by NM, 4-Sep-2011)

Ref Expression
Hypothesis zaddablx.g
|- G = { <. 1 , ZZ >. , <. 2 , + >. }
Assertion zaddablx
|- G e. Abel

Proof

Step Hyp Ref Expression
1 zaddablx.g
 |-  G = { <. 1 , ZZ >. , <. 2 , + >. }
2 zex
 |-  ZZ e. _V
3 addex
 |-  + e. _V
4 zaddcl
 |-  ( ( x e. ZZ /\ y e. ZZ ) -> ( x + y ) e. ZZ )
5 zcn
 |-  ( x e. ZZ -> x e. CC )
6 zcn
 |-  ( y e. ZZ -> y e. CC )
7 zcn
 |-  ( z e. ZZ -> z e. CC )
8 addass
 |-  ( ( x e. CC /\ y e. CC /\ z e. CC ) -> ( ( x + y ) + z ) = ( x + ( y + z ) ) )
9 5 6 7 8 syl3an
 |-  ( ( x e. ZZ /\ y e. ZZ /\ z e. ZZ ) -> ( ( x + y ) + z ) = ( x + ( y + z ) ) )
10 0z
 |-  0 e. ZZ
11 5 addid2d
 |-  ( x e. ZZ -> ( 0 + x ) = x )
12 znegcl
 |-  ( x e. ZZ -> -u x e. ZZ )
13 zcn
 |-  ( -u x e. ZZ -> -u x e. CC )
14 addcom
 |-  ( ( x e. CC /\ -u x e. CC ) -> ( x + -u x ) = ( -u x + x ) )
15 5 13 14 syl2an
 |-  ( ( x e. ZZ /\ -u x e. ZZ ) -> ( x + -u x ) = ( -u x + x ) )
16 12 15 mpdan
 |-  ( x e. ZZ -> ( x + -u x ) = ( -u x + x ) )
17 5 negidd
 |-  ( x e. ZZ -> ( x + -u x ) = 0 )
18 16 17 eqtr3d
 |-  ( x e. ZZ -> ( -u x + x ) = 0 )
19 2 3 1 4 9 10 11 12 18 isgrpix
 |-  G e. Grp
20 2 3 1 grpbasex
 |-  ZZ = ( Base ` G )
21 2 3 1 grpplusgx
 |-  + = ( +g ` G )
22 addcom
 |-  ( ( x e. CC /\ y e. CC ) -> ( x + y ) = ( y + x ) )
23 5 6 22 syl2an
 |-  ( ( x e. ZZ /\ y e. ZZ ) -> ( x + y ) = ( y + x ) )
24 19 20 21 23 isabli
 |-  G e. Abel