Metamath Proof Explorer


Theorem zcld2

Description: The integers are a closed set in the topology on CC . (Contributed by Mario Carneiro, 17-Feb-2015)

Ref Expression
Hypothesis recld2.1
|- J = ( TopOpen ` CCfld )
Assertion zcld2
|- ZZ e. ( Clsd ` J )

Proof

Step Hyp Ref Expression
1 recld2.1
 |-  J = ( TopOpen ` CCfld )
2 1 recld2
 |-  RR e. ( Clsd ` J )
3 1 tgioo2
 |-  ( topGen ` ran (,) ) = ( J |`t RR )
4 3 eqcomi
 |-  ( J |`t RR ) = ( topGen ` ran (,) )
5 4 zcld
 |-  ZZ e. ( Clsd ` ( J |`t RR ) )
6 restcldr
 |-  ( ( RR e. ( Clsd ` J ) /\ ZZ e. ( Clsd ` ( J |`t RR ) ) ) -> ZZ e. ( Clsd ` J ) )
7 2 5 6 mp2an
 |-  ZZ e. ( Clsd ` J )