Step |
Hyp |
Ref |
Expression |
1 |
|
zclmncvs.z |
|- Z = ( ringLMod ` ZZring ) |
2 |
|
zringring |
|- ZZring e. Ring |
3 |
|
rlmlmod |
|- ( ZZring e. Ring -> ( ringLMod ` ZZring ) e. LMod ) |
4 |
2 3
|
ax-mp |
|- ( ringLMod ` ZZring ) e. LMod |
5 |
|
rlmsca |
|- ( ZZring e. Ring -> ZZring = ( Scalar ` ( ringLMod ` ZZring ) ) ) |
6 |
2 5
|
ax-mp |
|- ZZring = ( Scalar ` ( ringLMod ` ZZring ) ) |
7 |
|
df-zring |
|- ZZring = ( CCfld |`s ZZ ) |
8 |
6 7
|
eqtr3i |
|- ( Scalar ` ( ringLMod ` ZZring ) ) = ( CCfld |`s ZZ ) |
9 |
|
zsubrg |
|- ZZ e. ( SubRing ` CCfld ) |
10 |
|
eqid |
|- ( Scalar ` ( ringLMod ` ZZring ) ) = ( Scalar ` ( ringLMod ` ZZring ) ) |
11 |
10
|
isclmi |
|- ( ( ( ringLMod ` ZZring ) e. LMod /\ ( Scalar ` ( ringLMod ` ZZring ) ) = ( CCfld |`s ZZ ) /\ ZZ e. ( SubRing ` CCfld ) ) -> ( ringLMod ` ZZring ) e. CMod ) |
12 |
4 8 9 11
|
mp3an |
|- ( ringLMod ` ZZring ) e. CMod |
13 |
1
|
eleq1i |
|- ( Z e. CMod <-> ( ringLMod ` ZZring ) e. CMod ) |
14 |
12 13
|
mpbir |
|- Z e. CMod |
15 |
|
zringndrg |
|- ZZring e/ DivRing |
16 |
15
|
neli |
|- -. ZZring e. DivRing |
17 |
5
|
eqcomd |
|- ( ZZring e. Ring -> ( Scalar ` ( ringLMod ` ZZring ) ) = ZZring ) |
18 |
2 17
|
ax-mp |
|- ( Scalar ` ( ringLMod ` ZZring ) ) = ZZring |
19 |
18
|
eleq1i |
|- ( ( Scalar ` ( ringLMod ` ZZring ) ) e. DivRing <-> ZZring e. DivRing ) |
20 |
16 19
|
mtbir |
|- -. ( Scalar ` ( ringLMod ` ZZring ) ) e. DivRing |
21 |
20
|
intnan |
|- -. ( ( ringLMod ` ZZring ) e. LMod /\ ( Scalar ` ( ringLMod ` ZZring ) ) e. DivRing ) |
22 |
10
|
islvec |
|- ( ( ringLMod ` ZZring ) e. LVec <-> ( ( ringLMod ` ZZring ) e. LMod /\ ( Scalar ` ( ringLMod ` ZZring ) ) e. DivRing ) ) |
23 |
21 22
|
mtbir |
|- -. ( ringLMod ` ZZring ) e. LVec |
24 |
23
|
olci |
|- ( -. ( ringLMod ` ZZring ) e. CMod \/ -. ( ringLMod ` ZZring ) e. LVec ) |
25 |
|
df-nel |
|- ( Z e/ CVec <-> -. Z e. CVec ) |
26 |
|
ianor |
|- ( -. ( ( ringLMod ` ZZring ) e. CMod /\ ( ringLMod ` ZZring ) e. LVec ) <-> ( -. ( ringLMod ` ZZring ) e. CMod \/ -. ( ringLMod ` ZZring ) e. LVec ) ) |
27 |
|
elin |
|- ( ( ringLMod ` ZZring ) e. ( CMod i^i LVec ) <-> ( ( ringLMod ` ZZring ) e. CMod /\ ( ringLMod ` ZZring ) e. LVec ) ) |
28 |
26 27
|
xchnxbir |
|- ( -. ( ringLMod ` ZZring ) e. ( CMod i^i LVec ) <-> ( -. ( ringLMod ` ZZring ) e. CMod \/ -. ( ringLMod ` ZZring ) e. LVec ) ) |
29 |
|
df-cvs |
|- CVec = ( CMod i^i LVec ) |
30 |
1 29
|
eleq12i |
|- ( Z e. CVec <-> ( ringLMod ` ZZring ) e. ( CMod i^i LVec ) ) |
31 |
28 30
|
xchnxbir |
|- ( -. Z e. CVec <-> ( -. ( ringLMod ` ZZring ) e. CMod \/ -. ( ringLMod ` ZZring ) e. LVec ) ) |
32 |
25 31
|
bitri |
|- ( Z e/ CVec <-> ( -. ( ringLMod ` ZZring ) e. CMod \/ -. ( ringLMod ` ZZring ) e. LVec ) ) |
33 |
24 32
|
mpbir |
|- Z e/ CVec |
34 |
14 33
|
pm3.2i |
|- ( Z e. CMod /\ Z e/ CVec ) |