| Step | Hyp | Ref | Expression | 
						
							| 1 |  | zcn |  |-  ( A e. ZZ -> A e. CC ) | 
						
							| 2 |  | zcn |  |-  ( B e. ZZ -> B e. CC ) | 
						
							| 3 |  | nncn |  |-  ( D e. NN -> D e. CC ) | 
						
							| 4 |  | nnne0 |  |-  ( D e. NN -> D =/= 0 ) | 
						
							| 5 | 3 4 | jca |  |-  ( D e. NN -> ( D e. CC /\ D =/= 0 ) ) | 
						
							| 6 |  | divdir |  |-  ( ( A e. CC /\ B e. CC /\ ( D e. CC /\ D =/= 0 ) ) -> ( ( A + B ) / D ) = ( ( A / D ) + ( B / D ) ) ) | 
						
							| 7 | 1 2 5 6 | syl3an |  |-  ( ( A e. ZZ /\ B e. ZZ /\ D e. NN ) -> ( ( A + B ) / D ) = ( ( A / D ) + ( B / D ) ) ) | 
						
							| 8 | 7 | 3comr |  |-  ( ( D e. NN /\ A e. ZZ /\ B e. ZZ ) -> ( ( A + B ) / D ) = ( ( A / D ) + ( B / D ) ) ) | 
						
							| 9 | 8 | adantr |  |-  ( ( ( D e. NN /\ A e. ZZ /\ B e. ZZ ) /\ ( ( A / D ) e. ZZ /\ ( B / D ) e. ZZ ) ) -> ( ( A + B ) / D ) = ( ( A / D ) + ( B / D ) ) ) | 
						
							| 10 |  | zaddcl |  |-  ( ( ( A / D ) e. ZZ /\ ( B / D ) e. ZZ ) -> ( ( A / D ) + ( B / D ) ) e. ZZ ) | 
						
							| 11 | 10 | adantl |  |-  ( ( ( D e. NN /\ A e. ZZ /\ B e. ZZ ) /\ ( ( A / D ) e. ZZ /\ ( B / D ) e. ZZ ) ) -> ( ( A / D ) + ( B / D ) ) e. ZZ ) | 
						
							| 12 | 9 11 | eqeltrd |  |-  ( ( ( D e. NN /\ A e. ZZ /\ B e. ZZ ) /\ ( ( A / D ) e. ZZ /\ ( B / D ) e. ZZ ) ) -> ( ( A + B ) / D ) e. ZZ ) |