Step |
Hyp |
Ref |
Expression |
1 |
|
zcn |
|- ( A e. ZZ -> A e. CC ) |
2 |
|
zcn |
|- ( B e. ZZ -> B e. CC ) |
3 |
|
nncn |
|- ( D e. NN -> D e. CC ) |
4 |
|
nnne0 |
|- ( D e. NN -> D =/= 0 ) |
5 |
3 4
|
jca |
|- ( D e. NN -> ( D e. CC /\ D =/= 0 ) ) |
6 |
|
divdir |
|- ( ( A e. CC /\ B e. CC /\ ( D e. CC /\ D =/= 0 ) ) -> ( ( A + B ) / D ) = ( ( A / D ) + ( B / D ) ) ) |
7 |
1 2 5 6
|
syl3an |
|- ( ( A e. ZZ /\ B e. ZZ /\ D e. NN ) -> ( ( A + B ) / D ) = ( ( A / D ) + ( B / D ) ) ) |
8 |
7
|
3comr |
|- ( ( D e. NN /\ A e. ZZ /\ B e. ZZ ) -> ( ( A + B ) / D ) = ( ( A / D ) + ( B / D ) ) ) |
9 |
8
|
adantr |
|- ( ( ( D e. NN /\ A e. ZZ /\ B e. ZZ ) /\ ( ( A / D ) e. ZZ /\ ( B / D ) e. ZZ ) ) -> ( ( A + B ) / D ) = ( ( A / D ) + ( B / D ) ) ) |
10 |
|
zaddcl |
|- ( ( ( A / D ) e. ZZ /\ ( B / D ) e. ZZ ) -> ( ( A / D ) + ( B / D ) ) e. ZZ ) |
11 |
10
|
adantl |
|- ( ( ( D e. NN /\ A e. ZZ /\ B e. ZZ ) /\ ( ( A / D ) e. ZZ /\ ( B / D ) e. ZZ ) ) -> ( ( A / D ) + ( B / D ) ) e. ZZ ) |
12 |
9 11
|
eqeltrd |
|- ( ( ( D e. NN /\ A e. ZZ /\ B e. ZZ ) /\ ( ( A / D ) e. ZZ /\ ( B / D ) e. ZZ ) ) -> ( ( A + B ) / D ) e. ZZ ) |