Step |
Hyp |
Ref |
Expression |
1 |
|
zdivgd.1 |
|- ( ph -> M e. CC ) |
2 |
|
zdivgd.2 |
|- ( ph -> N e. CC ) |
3 |
|
zdivgd.3 |
|- ( ph -> M =/= 0 ) |
4 |
|
zcn |
|- ( k e. ZZ -> k e. CC ) |
5 |
4
|
adantl |
|- ( ( ph /\ k e. ZZ ) -> k e. CC ) |
6 |
1
|
adantr |
|- ( ( ph /\ k e. ZZ ) -> M e. CC ) |
7 |
3
|
adantr |
|- ( ( ph /\ k e. ZZ ) -> M =/= 0 ) |
8 |
5 6 7
|
divcan3d |
|- ( ( ph /\ k e. ZZ ) -> ( ( M x. k ) / M ) = k ) |
9 |
|
oveq1 |
|- ( ( M x. k ) = N -> ( ( M x. k ) / M ) = ( N / M ) ) |
10 |
8 9
|
sylan9req |
|- ( ( ( ph /\ k e. ZZ ) /\ ( M x. k ) = N ) -> k = ( N / M ) ) |
11 |
|
simplr |
|- ( ( ( ph /\ k e. ZZ ) /\ ( M x. k ) = N ) -> k e. ZZ ) |
12 |
10 11
|
eqeltrrd |
|- ( ( ( ph /\ k e. ZZ ) /\ ( M x. k ) = N ) -> ( N / M ) e. ZZ ) |
13 |
12
|
rexlimdva2 |
|- ( ph -> ( E. k e. ZZ ( M x. k ) = N -> ( N / M ) e. ZZ ) ) |
14 |
2 1 3
|
divcan2d |
|- ( ph -> ( M x. ( N / M ) ) = N ) |
15 |
|
oveq2 |
|- ( k = ( N / M ) -> ( M x. k ) = ( M x. ( N / M ) ) ) |
16 |
15
|
eqeq1d |
|- ( k = ( N / M ) -> ( ( M x. k ) = N <-> ( M x. ( N / M ) ) = N ) ) |
17 |
16
|
rspcev |
|- ( ( ( N / M ) e. ZZ /\ ( M x. ( N / M ) ) = N ) -> E. k e. ZZ ( M x. k ) = N ) |
18 |
17
|
ex |
|- ( ( N / M ) e. ZZ -> ( ( M x. ( N / M ) ) = N -> E. k e. ZZ ( M x. k ) = N ) ) |
19 |
14 18
|
syl5com |
|- ( ph -> ( ( N / M ) e. ZZ -> E. k e. ZZ ( M x. k ) = N ) ) |
20 |
13 19
|
impbid |
|- ( ph -> ( E. k e. ZZ ( M x. k ) = N <-> ( N / M ) e. ZZ ) ) |