Step |
Hyp |
Ref |
Expression |
1 |
|
elz |
|- ( N e. ZZ <-> ( N e. RR /\ ( N = 0 \/ N e. NN \/ -u N e. NN ) ) ) |
2 |
|
oveq1 |
|- ( N = 0 -> ( N / 2 ) = ( 0 / 2 ) ) |
3 |
|
2cn |
|- 2 e. CC |
4 |
|
2ne0 |
|- 2 =/= 0 |
5 |
3 4
|
div0i |
|- ( 0 / 2 ) = 0 |
6 |
|
0z |
|- 0 e. ZZ |
7 |
5 6
|
eqeltri |
|- ( 0 / 2 ) e. ZZ |
8 |
2 7
|
eqeltrdi |
|- ( N = 0 -> ( N / 2 ) e. ZZ ) |
9 |
8
|
pm2.24d |
|- ( N = 0 -> ( -. ( N / 2 ) e. ZZ -> ( ( N + 1 ) / 2 ) e. ZZ ) ) |
10 |
9
|
adantl |
|- ( ( N e. RR /\ N = 0 ) -> ( -. ( N / 2 ) e. ZZ -> ( ( N + 1 ) / 2 ) e. ZZ ) ) |
11 |
|
nnz |
|- ( ( N / 2 ) e. NN -> ( N / 2 ) e. ZZ ) |
12 |
11
|
con3i |
|- ( -. ( N / 2 ) e. ZZ -> -. ( N / 2 ) e. NN ) |
13 |
|
nneo |
|- ( N e. NN -> ( ( N / 2 ) e. NN <-> -. ( ( N + 1 ) / 2 ) e. NN ) ) |
14 |
13
|
biimprd |
|- ( N e. NN -> ( -. ( ( N + 1 ) / 2 ) e. NN -> ( N / 2 ) e. NN ) ) |
15 |
14
|
con1d |
|- ( N e. NN -> ( -. ( N / 2 ) e. NN -> ( ( N + 1 ) / 2 ) e. NN ) ) |
16 |
|
nnz |
|- ( ( ( N + 1 ) / 2 ) e. NN -> ( ( N + 1 ) / 2 ) e. ZZ ) |
17 |
12 15 16
|
syl56 |
|- ( N e. NN -> ( -. ( N / 2 ) e. ZZ -> ( ( N + 1 ) / 2 ) e. ZZ ) ) |
18 |
17
|
adantl |
|- ( ( N e. RR /\ N e. NN ) -> ( -. ( N / 2 ) e. ZZ -> ( ( N + 1 ) / 2 ) e. ZZ ) ) |
19 |
|
recn |
|- ( N e. RR -> N e. CC ) |
20 |
|
divneg |
|- ( ( N e. CC /\ 2 e. CC /\ 2 =/= 0 ) -> -u ( N / 2 ) = ( -u N / 2 ) ) |
21 |
3 4 20
|
mp3an23 |
|- ( N e. CC -> -u ( N / 2 ) = ( -u N / 2 ) ) |
22 |
19 21
|
syl |
|- ( N e. RR -> -u ( N / 2 ) = ( -u N / 2 ) ) |
23 |
22
|
eleq1d |
|- ( N e. RR -> ( -u ( N / 2 ) e. NN <-> ( -u N / 2 ) e. NN ) ) |
24 |
|
nnnegz |
|- ( -u ( N / 2 ) e. NN -> -u -u ( N / 2 ) e. ZZ ) |
25 |
23 24
|
syl6bir |
|- ( N e. RR -> ( ( -u N / 2 ) e. NN -> -u -u ( N / 2 ) e. ZZ ) ) |
26 |
19
|
halfcld |
|- ( N e. RR -> ( N / 2 ) e. CC ) |
27 |
26
|
negnegd |
|- ( N e. RR -> -u -u ( N / 2 ) = ( N / 2 ) ) |
28 |
27
|
eleq1d |
|- ( N e. RR -> ( -u -u ( N / 2 ) e. ZZ <-> ( N / 2 ) e. ZZ ) ) |
29 |
25 28
|
sylibd |
|- ( N e. RR -> ( ( -u N / 2 ) e. NN -> ( N / 2 ) e. ZZ ) ) |
30 |
29
|
adantr |
|- ( ( N e. RR /\ -u N e. NN ) -> ( ( -u N / 2 ) e. NN -> ( N / 2 ) e. ZZ ) ) |
31 |
30
|
con3d |
|- ( ( N e. RR /\ -u N e. NN ) -> ( -. ( N / 2 ) e. ZZ -> -. ( -u N / 2 ) e. NN ) ) |
32 |
|
nneo |
|- ( -u N e. NN -> ( ( -u N / 2 ) e. NN <-> -. ( ( -u N + 1 ) / 2 ) e. NN ) ) |
33 |
32
|
biimprd |
|- ( -u N e. NN -> ( -. ( ( -u N + 1 ) / 2 ) e. NN -> ( -u N / 2 ) e. NN ) ) |
34 |
33
|
con1d |
|- ( -u N e. NN -> ( -. ( -u N / 2 ) e. NN -> ( ( -u N + 1 ) / 2 ) e. NN ) ) |
35 |
|
nnz |
|- ( ( ( -u N + 1 ) / 2 ) e. NN -> ( ( -u N + 1 ) / 2 ) e. ZZ ) |
36 |
|
peano2zm |
|- ( ( ( -u N + 1 ) / 2 ) e. ZZ -> ( ( ( -u N + 1 ) / 2 ) - 1 ) e. ZZ ) |
37 |
|
ax-1cn |
|- 1 e. CC |
38 |
37 3
|
negsubdi2i |
|- -u ( 1 - 2 ) = ( 2 - 1 ) |
39 |
|
2m1e1 |
|- ( 2 - 1 ) = 1 |
40 |
38 39
|
eqtr2i |
|- 1 = -u ( 1 - 2 ) |
41 |
37 3
|
subcli |
|- ( 1 - 2 ) e. CC |
42 |
37 41
|
negcon2i |
|- ( 1 = -u ( 1 - 2 ) <-> ( 1 - 2 ) = -u 1 ) |
43 |
40 42
|
mpbi |
|- ( 1 - 2 ) = -u 1 |
44 |
43
|
oveq2i |
|- ( -u N + ( 1 - 2 ) ) = ( -u N + -u 1 ) |
45 |
|
negcl |
|- ( N e. CC -> -u N e. CC ) |
46 |
|
addsubass |
|- ( ( -u N e. CC /\ 1 e. CC /\ 2 e. CC ) -> ( ( -u N + 1 ) - 2 ) = ( -u N + ( 1 - 2 ) ) ) |
47 |
37 3 46
|
mp3an23 |
|- ( -u N e. CC -> ( ( -u N + 1 ) - 2 ) = ( -u N + ( 1 - 2 ) ) ) |
48 |
45 47
|
syl |
|- ( N e. CC -> ( ( -u N + 1 ) - 2 ) = ( -u N + ( 1 - 2 ) ) ) |
49 |
|
negdi |
|- ( ( N e. CC /\ 1 e. CC ) -> -u ( N + 1 ) = ( -u N + -u 1 ) ) |
50 |
37 49
|
mpan2 |
|- ( N e. CC -> -u ( N + 1 ) = ( -u N + -u 1 ) ) |
51 |
44 48 50
|
3eqtr4a |
|- ( N e. CC -> ( ( -u N + 1 ) - 2 ) = -u ( N + 1 ) ) |
52 |
51
|
oveq1d |
|- ( N e. CC -> ( ( ( -u N + 1 ) - 2 ) / 2 ) = ( -u ( N + 1 ) / 2 ) ) |
53 |
|
2div2e1 |
|- ( 2 / 2 ) = 1 |
54 |
53
|
eqcomi |
|- 1 = ( 2 / 2 ) |
55 |
54
|
oveq2i |
|- ( ( ( -u N + 1 ) / 2 ) - 1 ) = ( ( ( -u N + 1 ) / 2 ) - ( 2 / 2 ) ) |
56 |
|
peano2cn |
|- ( -u N e. CC -> ( -u N + 1 ) e. CC ) |
57 |
45 56
|
syl |
|- ( N e. CC -> ( -u N + 1 ) e. CC ) |
58 |
|
2cnne0 |
|- ( 2 e. CC /\ 2 =/= 0 ) |
59 |
|
divsubdir |
|- ( ( ( -u N + 1 ) e. CC /\ 2 e. CC /\ ( 2 e. CC /\ 2 =/= 0 ) ) -> ( ( ( -u N + 1 ) - 2 ) / 2 ) = ( ( ( -u N + 1 ) / 2 ) - ( 2 / 2 ) ) ) |
60 |
3 58 59
|
mp3an23 |
|- ( ( -u N + 1 ) e. CC -> ( ( ( -u N + 1 ) - 2 ) / 2 ) = ( ( ( -u N + 1 ) / 2 ) - ( 2 / 2 ) ) ) |
61 |
57 60
|
syl |
|- ( N e. CC -> ( ( ( -u N + 1 ) - 2 ) / 2 ) = ( ( ( -u N + 1 ) / 2 ) - ( 2 / 2 ) ) ) |
62 |
55 61
|
eqtr4id |
|- ( N e. CC -> ( ( ( -u N + 1 ) / 2 ) - 1 ) = ( ( ( -u N + 1 ) - 2 ) / 2 ) ) |
63 |
|
peano2cn |
|- ( N e. CC -> ( N + 1 ) e. CC ) |
64 |
|
divneg |
|- ( ( ( N + 1 ) e. CC /\ 2 e. CC /\ 2 =/= 0 ) -> -u ( ( N + 1 ) / 2 ) = ( -u ( N + 1 ) / 2 ) ) |
65 |
3 4 64
|
mp3an23 |
|- ( ( N + 1 ) e. CC -> -u ( ( N + 1 ) / 2 ) = ( -u ( N + 1 ) / 2 ) ) |
66 |
63 65
|
syl |
|- ( N e. CC -> -u ( ( N + 1 ) / 2 ) = ( -u ( N + 1 ) / 2 ) ) |
67 |
52 62 66
|
3eqtr4d |
|- ( N e. CC -> ( ( ( -u N + 1 ) / 2 ) - 1 ) = -u ( ( N + 1 ) / 2 ) ) |
68 |
19 67
|
syl |
|- ( N e. RR -> ( ( ( -u N + 1 ) / 2 ) - 1 ) = -u ( ( N + 1 ) / 2 ) ) |
69 |
68
|
eleq1d |
|- ( N e. RR -> ( ( ( ( -u N + 1 ) / 2 ) - 1 ) e. ZZ <-> -u ( ( N + 1 ) / 2 ) e. ZZ ) ) |
70 |
36 69
|
syl5ib |
|- ( N e. RR -> ( ( ( -u N + 1 ) / 2 ) e. ZZ -> -u ( ( N + 1 ) / 2 ) e. ZZ ) ) |
71 |
|
znegcl |
|- ( -u ( ( N + 1 ) / 2 ) e. ZZ -> -u -u ( ( N + 1 ) / 2 ) e. ZZ ) |
72 |
70 71
|
syl6 |
|- ( N e. RR -> ( ( ( -u N + 1 ) / 2 ) e. ZZ -> -u -u ( ( N + 1 ) / 2 ) e. ZZ ) ) |
73 |
|
peano2re |
|- ( N e. RR -> ( N + 1 ) e. RR ) |
74 |
73
|
recnd |
|- ( N e. RR -> ( N + 1 ) e. CC ) |
75 |
74
|
halfcld |
|- ( N e. RR -> ( ( N + 1 ) / 2 ) e. CC ) |
76 |
75
|
negnegd |
|- ( N e. RR -> -u -u ( ( N + 1 ) / 2 ) = ( ( N + 1 ) / 2 ) ) |
77 |
76
|
eleq1d |
|- ( N e. RR -> ( -u -u ( ( N + 1 ) / 2 ) e. ZZ <-> ( ( N + 1 ) / 2 ) e. ZZ ) ) |
78 |
72 77
|
sylibd |
|- ( N e. RR -> ( ( ( -u N + 1 ) / 2 ) e. ZZ -> ( ( N + 1 ) / 2 ) e. ZZ ) ) |
79 |
35 78
|
syl5 |
|- ( N e. RR -> ( ( ( -u N + 1 ) / 2 ) e. NN -> ( ( N + 1 ) / 2 ) e. ZZ ) ) |
80 |
34 79
|
sylan9r |
|- ( ( N e. RR /\ -u N e. NN ) -> ( -. ( -u N / 2 ) e. NN -> ( ( N + 1 ) / 2 ) e. ZZ ) ) |
81 |
31 80
|
syld |
|- ( ( N e. RR /\ -u N e. NN ) -> ( -. ( N / 2 ) e. ZZ -> ( ( N + 1 ) / 2 ) e. ZZ ) ) |
82 |
10 18 81
|
3jaodan |
|- ( ( N e. RR /\ ( N = 0 \/ N e. NN \/ -u N e. NN ) ) -> ( -. ( N / 2 ) e. ZZ -> ( ( N + 1 ) / 2 ) e. ZZ ) ) |
83 |
1 82
|
sylbi |
|- ( N e. ZZ -> ( -. ( N / 2 ) e. ZZ -> ( ( N + 1 ) / 2 ) e. ZZ ) ) |
84 |
83
|
orrd |
|- ( N e. ZZ -> ( ( N / 2 ) e. ZZ \/ ( ( N + 1 ) / 2 ) e. ZZ ) ) |