| Step | Hyp | Ref | Expression | 
						
							| 1 |  | elz |  |-  ( N e. ZZ <-> ( N e. RR /\ ( N = 0 \/ N e. NN \/ -u N e. NN ) ) ) | 
						
							| 2 |  | oveq1 |  |-  ( N = 0 -> ( N / 2 ) = ( 0 / 2 ) ) | 
						
							| 3 |  | 2cn |  |-  2 e. CC | 
						
							| 4 |  | 2ne0 |  |-  2 =/= 0 | 
						
							| 5 | 3 4 | div0i |  |-  ( 0 / 2 ) = 0 | 
						
							| 6 |  | 0z |  |-  0 e. ZZ | 
						
							| 7 | 5 6 | eqeltri |  |-  ( 0 / 2 ) e. ZZ | 
						
							| 8 | 2 7 | eqeltrdi |  |-  ( N = 0 -> ( N / 2 ) e. ZZ ) | 
						
							| 9 | 8 | pm2.24d |  |-  ( N = 0 -> ( -. ( N / 2 ) e. ZZ -> ( ( N + 1 ) / 2 ) e. ZZ ) ) | 
						
							| 10 | 9 | adantl |  |-  ( ( N e. RR /\ N = 0 ) -> ( -. ( N / 2 ) e. ZZ -> ( ( N + 1 ) / 2 ) e. ZZ ) ) | 
						
							| 11 |  | nnz |  |-  ( ( N / 2 ) e. NN -> ( N / 2 ) e. ZZ ) | 
						
							| 12 | 11 | con3i |  |-  ( -. ( N / 2 ) e. ZZ -> -. ( N / 2 ) e. NN ) | 
						
							| 13 |  | nneo |  |-  ( N e. NN -> ( ( N / 2 ) e. NN <-> -. ( ( N + 1 ) / 2 ) e. NN ) ) | 
						
							| 14 | 13 | biimprd |  |-  ( N e. NN -> ( -. ( ( N + 1 ) / 2 ) e. NN -> ( N / 2 ) e. NN ) ) | 
						
							| 15 | 14 | con1d |  |-  ( N e. NN -> ( -. ( N / 2 ) e. NN -> ( ( N + 1 ) / 2 ) e. NN ) ) | 
						
							| 16 |  | nnz |  |-  ( ( ( N + 1 ) / 2 ) e. NN -> ( ( N + 1 ) / 2 ) e. ZZ ) | 
						
							| 17 | 12 15 16 | syl56 |  |-  ( N e. NN -> ( -. ( N / 2 ) e. ZZ -> ( ( N + 1 ) / 2 ) e. ZZ ) ) | 
						
							| 18 | 17 | adantl |  |-  ( ( N e. RR /\ N e. NN ) -> ( -. ( N / 2 ) e. ZZ -> ( ( N + 1 ) / 2 ) e. ZZ ) ) | 
						
							| 19 |  | recn |  |-  ( N e. RR -> N e. CC ) | 
						
							| 20 |  | divneg |  |-  ( ( N e. CC /\ 2 e. CC /\ 2 =/= 0 ) -> -u ( N / 2 ) = ( -u N / 2 ) ) | 
						
							| 21 | 3 4 20 | mp3an23 |  |-  ( N e. CC -> -u ( N / 2 ) = ( -u N / 2 ) ) | 
						
							| 22 | 19 21 | syl |  |-  ( N e. RR -> -u ( N / 2 ) = ( -u N / 2 ) ) | 
						
							| 23 | 22 | eleq1d |  |-  ( N e. RR -> ( -u ( N / 2 ) e. NN <-> ( -u N / 2 ) e. NN ) ) | 
						
							| 24 |  | nnnegz |  |-  ( -u ( N / 2 ) e. NN -> -u -u ( N / 2 ) e. ZZ ) | 
						
							| 25 | 23 24 | biimtrrdi |  |-  ( N e. RR -> ( ( -u N / 2 ) e. NN -> -u -u ( N / 2 ) e. ZZ ) ) | 
						
							| 26 | 19 | halfcld |  |-  ( N e. RR -> ( N / 2 ) e. CC ) | 
						
							| 27 | 26 | negnegd |  |-  ( N e. RR -> -u -u ( N / 2 ) = ( N / 2 ) ) | 
						
							| 28 | 27 | eleq1d |  |-  ( N e. RR -> ( -u -u ( N / 2 ) e. ZZ <-> ( N / 2 ) e. ZZ ) ) | 
						
							| 29 | 25 28 | sylibd |  |-  ( N e. RR -> ( ( -u N / 2 ) e. NN -> ( N / 2 ) e. ZZ ) ) | 
						
							| 30 | 29 | adantr |  |-  ( ( N e. RR /\ -u N e. NN ) -> ( ( -u N / 2 ) e. NN -> ( N / 2 ) e. ZZ ) ) | 
						
							| 31 | 30 | con3d |  |-  ( ( N e. RR /\ -u N e. NN ) -> ( -. ( N / 2 ) e. ZZ -> -. ( -u N / 2 ) e. NN ) ) | 
						
							| 32 |  | nneo |  |-  ( -u N e. NN -> ( ( -u N / 2 ) e. NN <-> -. ( ( -u N + 1 ) / 2 ) e. NN ) ) | 
						
							| 33 | 32 | biimprd |  |-  ( -u N e. NN -> ( -. ( ( -u N + 1 ) / 2 ) e. NN -> ( -u N / 2 ) e. NN ) ) | 
						
							| 34 | 33 | con1d |  |-  ( -u N e. NN -> ( -. ( -u N / 2 ) e. NN -> ( ( -u N + 1 ) / 2 ) e. NN ) ) | 
						
							| 35 |  | nnz |  |-  ( ( ( -u N + 1 ) / 2 ) e. NN -> ( ( -u N + 1 ) / 2 ) e. ZZ ) | 
						
							| 36 |  | peano2zm |  |-  ( ( ( -u N + 1 ) / 2 ) e. ZZ -> ( ( ( -u N + 1 ) / 2 ) - 1 ) e. ZZ ) | 
						
							| 37 |  | ax-1cn |  |-  1 e. CC | 
						
							| 38 | 37 3 | negsubdi2i |  |-  -u ( 1 - 2 ) = ( 2 - 1 ) | 
						
							| 39 |  | 2m1e1 |  |-  ( 2 - 1 ) = 1 | 
						
							| 40 | 38 39 | eqtr2i |  |-  1 = -u ( 1 - 2 ) | 
						
							| 41 | 37 3 | subcli |  |-  ( 1 - 2 ) e. CC | 
						
							| 42 | 37 41 | negcon2i |  |-  ( 1 = -u ( 1 - 2 ) <-> ( 1 - 2 ) = -u 1 ) | 
						
							| 43 | 40 42 | mpbi |  |-  ( 1 - 2 ) = -u 1 | 
						
							| 44 | 43 | oveq2i |  |-  ( -u N + ( 1 - 2 ) ) = ( -u N + -u 1 ) | 
						
							| 45 |  | negcl |  |-  ( N e. CC -> -u N e. CC ) | 
						
							| 46 |  | addsubass |  |-  ( ( -u N e. CC /\ 1 e. CC /\ 2 e. CC ) -> ( ( -u N + 1 ) - 2 ) = ( -u N + ( 1 - 2 ) ) ) | 
						
							| 47 | 37 3 46 | mp3an23 |  |-  ( -u N e. CC -> ( ( -u N + 1 ) - 2 ) = ( -u N + ( 1 - 2 ) ) ) | 
						
							| 48 | 45 47 | syl |  |-  ( N e. CC -> ( ( -u N + 1 ) - 2 ) = ( -u N + ( 1 - 2 ) ) ) | 
						
							| 49 |  | negdi |  |-  ( ( N e. CC /\ 1 e. CC ) -> -u ( N + 1 ) = ( -u N + -u 1 ) ) | 
						
							| 50 | 37 49 | mpan2 |  |-  ( N e. CC -> -u ( N + 1 ) = ( -u N + -u 1 ) ) | 
						
							| 51 | 44 48 50 | 3eqtr4a |  |-  ( N e. CC -> ( ( -u N + 1 ) - 2 ) = -u ( N + 1 ) ) | 
						
							| 52 | 51 | oveq1d |  |-  ( N e. CC -> ( ( ( -u N + 1 ) - 2 ) / 2 ) = ( -u ( N + 1 ) / 2 ) ) | 
						
							| 53 |  | 2div2e1 |  |-  ( 2 / 2 ) = 1 | 
						
							| 54 | 53 | eqcomi |  |-  1 = ( 2 / 2 ) | 
						
							| 55 | 54 | oveq2i |  |-  ( ( ( -u N + 1 ) / 2 ) - 1 ) = ( ( ( -u N + 1 ) / 2 ) - ( 2 / 2 ) ) | 
						
							| 56 |  | peano2cn |  |-  ( -u N e. CC -> ( -u N + 1 ) e. CC ) | 
						
							| 57 | 45 56 | syl |  |-  ( N e. CC -> ( -u N + 1 ) e. CC ) | 
						
							| 58 |  | 2cnne0 |  |-  ( 2 e. CC /\ 2 =/= 0 ) | 
						
							| 59 |  | divsubdir |  |-  ( ( ( -u N + 1 ) e. CC /\ 2 e. CC /\ ( 2 e. CC /\ 2 =/= 0 ) ) -> ( ( ( -u N + 1 ) - 2 ) / 2 ) = ( ( ( -u N + 1 ) / 2 ) - ( 2 / 2 ) ) ) | 
						
							| 60 | 3 58 59 | mp3an23 |  |-  ( ( -u N + 1 ) e. CC -> ( ( ( -u N + 1 ) - 2 ) / 2 ) = ( ( ( -u N + 1 ) / 2 ) - ( 2 / 2 ) ) ) | 
						
							| 61 | 57 60 | syl |  |-  ( N e. CC -> ( ( ( -u N + 1 ) - 2 ) / 2 ) = ( ( ( -u N + 1 ) / 2 ) - ( 2 / 2 ) ) ) | 
						
							| 62 | 55 61 | eqtr4id |  |-  ( N e. CC -> ( ( ( -u N + 1 ) / 2 ) - 1 ) = ( ( ( -u N + 1 ) - 2 ) / 2 ) ) | 
						
							| 63 |  | peano2cn |  |-  ( N e. CC -> ( N + 1 ) e. CC ) | 
						
							| 64 |  | divneg |  |-  ( ( ( N + 1 ) e. CC /\ 2 e. CC /\ 2 =/= 0 ) -> -u ( ( N + 1 ) / 2 ) = ( -u ( N + 1 ) / 2 ) ) | 
						
							| 65 | 3 4 64 | mp3an23 |  |-  ( ( N + 1 ) e. CC -> -u ( ( N + 1 ) / 2 ) = ( -u ( N + 1 ) / 2 ) ) | 
						
							| 66 | 63 65 | syl |  |-  ( N e. CC -> -u ( ( N + 1 ) / 2 ) = ( -u ( N + 1 ) / 2 ) ) | 
						
							| 67 | 52 62 66 | 3eqtr4d |  |-  ( N e. CC -> ( ( ( -u N + 1 ) / 2 ) - 1 ) = -u ( ( N + 1 ) / 2 ) ) | 
						
							| 68 | 19 67 | syl |  |-  ( N e. RR -> ( ( ( -u N + 1 ) / 2 ) - 1 ) = -u ( ( N + 1 ) / 2 ) ) | 
						
							| 69 | 68 | eleq1d |  |-  ( N e. RR -> ( ( ( ( -u N + 1 ) / 2 ) - 1 ) e. ZZ <-> -u ( ( N + 1 ) / 2 ) e. ZZ ) ) | 
						
							| 70 | 36 69 | imbitrid |  |-  ( N e. RR -> ( ( ( -u N + 1 ) / 2 ) e. ZZ -> -u ( ( N + 1 ) / 2 ) e. ZZ ) ) | 
						
							| 71 |  | znegcl |  |-  ( -u ( ( N + 1 ) / 2 ) e. ZZ -> -u -u ( ( N + 1 ) / 2 ) e. ZZ ) | 
						
							| 72 | 70 71 | syl6 |  |-  ( N e. RR -> ( ( ( -u N + 1 ) / 2 ) e. ZZ -> -u -u ( ( N + 1 ) / 2 ) e. ZZ ) ) | 
						
							| 73 |  | peano2re |  |-  ( N e. RR -> ( N + 1 ) e. RR ) | 
						
							| 74 | 73 | recnd |  |-  ( N e. RR -> ( N + 1 ) e. CC ) | 
						
							| 75 | 74 | halfcld |  |-  ( N e. RR -> ( ( N + 1 ) / 2 ) e. CC ) | 
						
							| 76 | 75 | negnegd |  |-  ( N e. RR -> -u -u ( ( N + 1 ) / 2 ) = ( ( N + 1 ) / 2 ) ) | 
						
							| 77 | 76 | eleq1d |  |-  ( N e. RR -> ( -u -u ( ( N + 1 ) / 2 ) e. ZZ <-> ( ( N + 1 ) / 2 ) e. ZZ ) ) | 
						
							| 78 | 72 77 | sylibd |  |-  ( N e. RR -> ( ( ( -u N + 1 ) / 2 ) e. ZZ -> ( ( N + 1 ) / 2 ) e. ZZ ) ) | 
						
							| 79 | 35 78 | syl5 |  |-  ( N e. RR -> ( ( ( -u N + 1 ) / 2 ) e. NN -> ( ( N + 1 ) / 2 ) e. ZZ ) ) | 
						
							| 80 | 34 79 | sylan9r |  |-  ( ( N e. RR /\ -u N e. NN ) -> ( -. ( -u N / 2 ) e. NN -> ( ( N + 1 ) / 2 ) e. ZZ ) ) | 
						
							| 81 | 31 80 | syld |  |-  ( ( N e. RR /\ -u N e. NN ) -> ( -. ( N / 2 ) e. ZZ -> ( ( N + 1 ) / 2 ) e. ZZ ) ) | 
						
							| 82 | 10 18 81 | 3jaodan |  |-  ( ( N e. RR /\ ( N = 0 \/ N e. NN \/ -u N e. NN ) ) -> ( -. ( N / 2 ) e. ZZ -> ( ( N + 1 ) / 2 ) e. ZZ ) ) | 
						
							| 83 | 1 82 | sylbi |  |-  ( N e. ZZ -> ( -. ( N / 2 ) e. ZZ -> ( ( N + 1 ) / 2 ) e. ZZ ) ) | 
						
							| 84 | 83 | orrd |  |-  ( N e. ZZ -> ( ( N / 2 ) e. ZZ \/ ( ( N + 1 ) / 2 ) e. ZZ ) ) |