Metamath Proof Explorer


Theorem zeo5

Description: An integer is either even or odd, version of zeo3 avoiding the negation of the representation of an odd number. (Proposed by BJ, 21-Jun-2021.) (Contributed by AV, 26-Jun-2020)

Ref Expression
Assertion zeo5
|- ( N e. ZZ -> ( 2 || N \/ 2 || ( N + 1 ) ) )

Proof

Step Hyp Ref Expression
1 zeo3
 |-  ( N e. ZZ -> ( 2 || N \/ -. 2 || N ) )
2 oddp1even
 |-  ( N e. ZZ -> ( -. 2 || N <-> 2 || ( N + 1 ) ) )
3 2 bicomd
 |-  ( N e. ZZ -> ( 2 || ( N + 1 ) <-> -. 2 || N ) )
4 3 orbi2d
 |-  ( N e. ZZ -> ( ( 2 || N \/ 2 || ( N + 1 ) ) <-> ( 2 || N \/ -. 2 || N ) ) )
5 1 4 mpbird
 |-  ( N e. ZZ -> ( 2 || N \/ 2 || ( N + 1 ) ) )