Step |
Hyp |
Ref |
Expression |
1 |
|
gcddvds |
|- ( ( A e. ZZ /\ B e. ZZ ) -> ( ( A gcd B ) || A /\ ( A gcd B ) || B ) ) |
2 |
|
gcdcl |
|- ( ( A e. ZZ /\ B e. ZZ ) -> ( A gcd B ) e. NN0 ) |
3 |
2
|
nn0zd |
|- ( ( A e. ZZ /\ B e. ZZ ) -> ( A gcd B ) e. ZZ ) |
4 |
|
simpl |
|- ( ( A e. ZZ /\ B e. ZZ ) -> A e. ZZ ) |
5 |
|
divides |
|- ( ( ( A gcd B ) e. ZZ /\ A e. ZZ ) -> ( ( A gcd B ) || A <-> E. n e. ZZ ( n x. ( A gcd B ) ) = A ) ) |
6 |
3 4 5
|
syl2anc |
|- ( ( A e. ZZ /\ B e. ZZ ) -> ( ( A gcd B ) || A <-> E. n e. ZZ ( n x. ( A gcd B ) ) = A ) ) |
7 |
|
eqcom |
|- ( ( n x. ( A gcd B ) ) = A <-> A = ( n x. ( A gcd B ) ) ) |
8 |
7
|
a1i |
|- ( ( A e. ZZ /\ B e. ZZ ) -> ( ( n x. ( A gcd B ) ) = A <-> A = ( n x. ( A gcd B ) ) ) ) |
9 |
8
|
rexbidv |
|- ( ( A e. ZZ /\ B e. ZZ ) -> ( E. n e. ZZ ( n x. ( A gcd B ) ) = A <-> E. n e. ZZ A = ( n x. ( A gcd B ) ) ) ) |
10 |
9
|
biimpd |
|- ( ( A e. ZZ /\ B e. ZZ ) -> ( E. n e. ZZ ( n x. ( A gcd B ) ) = A -> E. n e. ZZ A = ( n x. ( A gcd B ) ) ) ) |
11 |
6 10
|
sylbid |
|- ( ( A e. ZZ /\ B e. ZZ ) -> ( ( A gcd B ) || A -> E. n e. ZZ A = ( n x. ( A gcd B ) ) ) ) |
12 |
11
|
adantrd |
|- ( ( A e. ZZ /\ B e. ZZ ) -> ( ( ( A gcd B ) || A /\ ( A gcd B ) || B ) -> E. n e. ZZ A = ( n x. ( A gcd B ) ) ) ) |
13 |
1 12
|
mpd |
|- ( ( A e. ZZ /\ B e. ZZ ) -> E. n e. ZZ A = ( n x. ( A gcd B ) ) ) |