| Step | Hyp | Ref | Expression | 
						
							| 1 |  | initoval.c |  |-  ( ph -> C e. Cat ) | 
						
							| 2 |  | initoval.b |  |-  B = ( Base ` C ) | 
						
							| 3 |  | initoval.h |  |-  H = ( Hom ` C ) | 
						
							| 4 |  | df-zeroo |  |-  ZeroO = ( c e. Cat |-> ( ( InitO ` c ) i^i ( TermO ` c ) ) ) | 
						
							| 5 |  | fveq2 |  |-  ( c = C -> ( InitO ` c ) = ( InitO ` C ) ) | 
						
							| 6 |  | fveq2 |  |-  ( c = C -> ( TermO ` c ) = ( TermO ` C ) ) | 
						
							| 7 | 5 6 | ineq12d |  |-  ( c = C -> ( ( InitO ` c ) i^i ( TermO ` c ) ) = ( ( InitO ` C ) i^i ( TermO ` C ) ) ) | 
						
							| 8 |  | fvex |  |-  ( InitO ` C ) e. _V | 
						
							| 9 | 8 | inex1 |  |-  ( ( InitO ` C ) i^i ( TermO ` C ) ) e. _V | 
						
							| 10 | 9 | a1i |  |-  ( ph -> ( ( InitO ` C ) i^i ( TermO ` C ) ) e. _V ) | 
						
							| 11 | 4 7 1 10 | fvmptd3 |  |-  ( ph -> ( ZeroO ` C ) = ( ( InitO ` C ) i^i ( TermO ` C ) ) ) |