Metamath Proof Explorer


Theorem zexALT

Description: Alternate proof of zex . (Contributed by NM, 30-Jul-2004) (Revised by Mario Carneiro, 16-May-2014) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Assertion zexALT
|- ZZ e. _V

Proof

Step Hyp Ref Expression
1 dfz2
 |-  ZZ = ( - " ( NN X. NN ) )
2 subf
 |-  - : ( CC X. CC ) --> CC
3 ffun
 |-  ( - : ( CC X. CC ) --> CC -> Fun - )
4 nnexALT
 |-  NN e. _V
5 4 4 xpex
 |-  ( NN X. NN ) e. _V
6 5 funimaex
 |-  ( Fun - -> ( - " ( NN X. NN ) ) e. _V )
7 2 3 6 mp2b
 |-  ( - " ( NN X. NN ) ) e. _V
8 1 7 eqeltri
 |-  ZZ e. _V