Metamath Proof Explorer


Theorem zexpcld

Description: Closure of exponentiation of integers, deductive form. (Contributed by SN, 15-Sep-2024)

Ref Expression
Hypotheses zexpcld.1
|- ( ph -> A e. ZZ )
zexpcld.2
|- ( ph -> N e. NN0 )
Assertion zexpcld
|- ( ph -> ( A ^ N ) e. ZZ )

Proof

Step Hyp Ref Expression
1 zexpcld.1
 |-  ( ph -> A e. ZZ )
2 zexpcld.2
 |-  ( ph -> N e. NN0 )
3 zexpcl
 |-  ( ( A e. ZZ /\ N e. NN0 ) -> ( A ^ N ) e. ZZ )
4 1 2 3 syl2anc
 |-  ( ph -> ( A ^ N ) e. ZZ )