| Step |
Hyp |
Ref |
Expression |
| 1 |
|
uzf |
|- ZZ>= : ZZ --> ~P ZZ |
| 2 |
|
frn |
|- ( ZZ>= : ZZ --> ~P ZZ -> ran ZZ>= C_ ~P ZZ ) |
| 3 |
1 2
|
ax-mp |
|- ran ZZ>= C_ ~P ZZ |
| 4 |
|
ffn |
|- ( ZZ>= : ZZ --> ~P ZZ -> ZZ>= Fn ZZ ) |
| 5 |
1 4
|
ax-mp |
|- ZZ>= Fn ZZ |
| 6 |
|
1z |
|- 1 e. ZZ |
| 7 |
|
fnfvelrn |
|- ( ( ZZ>= Fn ZZ /\ 1 e. ZZ ) -> ( ZZ>= ` 1 ) e. ran ZZ>= ) |
| 8 |
5 6 7
|
mp2an |
|- ( ZZ>= ` 1 ) e. ran ZZ>= |
| 9 |
8
|
ne0ii |
|- ran ZZ>= =/= (/) |
| 10 |
|
uzid |
|- ( x e. ZZ -> x e. ( ZZ>= ` x ) ) |
| 11 |
|
n0i |
|- ( x e. ( ZZ>= ` x ) -> -. ( ZZ>= ` x ) = (/) ) |
| 12 |
10 11
|
syl |
|- ( x e. ZZ -> -. ( ZZ>= ` x ) = (/) ) |
| 13 |
12
|
nrex |
|- -. E. x e. ZZ ( ZZ>= ` x ) = (/) |
| 14 |
|
fvelrnb |
|- ( ZZ>= Fn ZZ -> ( (/) e. ran ZZ>= <-> E. x e. ZZ ( ZZ>= ` x ) = (/) ) ) |
| 15 |
5 14
|
ax-mp |
|- ( (/) e. ran ZZ>= <-> E. x e. ZZ ( ZZ>= ` x ) = (/) ) |
| 16 |
13 15
|
mtbir |
|- -. (/) e. ran ZZ>= |
| 17 |
16
|
nelir |
|- (/) e/ ran ZZ>= |
| 18 |
|
uzin2 |
|- ( ( x e. ran ZZ>= /\ y e. ran ZZ>= ) -> ( x i^i y ) e. ran ZZ>= ) |
| 19 |
|
vex |
|- x e. _V |
| 20 |
19
|
inex1 |
|- ( x i^i y ) e. _V |
| 21 |
20
|
pwid |
|- ( x i^i y ) e. ~P ( x i^i y ) |
| 22 |
|
inelcm |
|- ( ( ( x i^i y ) e. ran ZZ>= /\ ( x i^i y ) e. ~P ( x i^i y ) ) -> ( ran ZZ>= i^i ~P ( x i^i y ) ) =/= (/) ) |
| 23 |
18 21 22
|
sylancl |
|- ( ( x e. ran ZZ>= /\ y e. ran ZZ>= ) -> ( ran ZZ>= i^i ~P ( x i^i y ) ) =/= (/) ) |
| 24 |
23
|
rgen2 |
|- A. x e. ran ZZ>= A. y e. ran ZZ>= ( ran ZZ>= i^i ~P ( x i^i y ) ) =/= (/) |
| 25 |
9 17 24
|
3pm3.2i |
|- ( ran ZZ>= =/= (/) /\ (/) e/ ran ZZ>= /\ A. x e. ran ZZ>= A. y e. ran ZZ>= ( ran ZZ>= i^i ~P ( x i^i y ) ) =/= (/) ) |
| 26 |
|
zex |
|- ZZ e. _V |
| 27 |
|
isfbas |
|- ( ZZ e. _V -> ( ran ZZ>= e. ( fBas ` ZZ ) <-> ( ran ZZ>= C_ ~P ZZ /\ ( ran ZZ>= =/= (/) /\ (/) e/ ran ZZ>= /\ A. x e. ran ZZ>= A. y e. ran ZZ>= ( ran ZZ>= i^i ~P ( x i^i y ) ) =/= (/) ) ) ) ) |
| 28 |
26 27
|
ax-mp |
|- ( ran ZZ>= e. ( fBas ` ZZ ) <-> ( ran ZZ>= C_ ~P ZZ /\ ( ran ZZ>= =/= (/) /\ (/) e/ ran ZZ>= /\ A. x e. ran ZZ>= A. y e. ran ZZ>= ( ran ZZ>= i^i ~P ( x i^i y ) ) =/= (/) ) ) ) |
| 29 |
3 25 28
|
mpbir2an |
|- ran ZZ>= e. ( fBas ` ZZ ) |