Description: Axiom of Regularity ax-reg , reproved from conditionless ZFC axioms. Usage of this theorem is discouraged because it depends on ax-13 . (Contributed by NM, 15-Aug-2003) (Proof modification is discouraged.) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | zfcndreg | |- ( E. y y e. x -> E. y ( y e. x /\ A. z ( z e. y -> -. z e. x ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nfe1 | |- F/ y E. y ( y e. x /\ A. z ( z e. y -> -. z e. x ) ) |
|
| 2 | axregnd | |- ( y e. x -> E. y ( y e. x /\ A. z ( z e. y -> -. z e. x ) ) ) |
|
| 3 | 1 2 | exlimi | |- ( E. y y e. x -> E. y ( y e. x /\ A. z ( z e. y -> -. z e. x ) ) ) |