Metamath Proof Explorer


Theorem zfcndreg

Description: Axiom of Regularity ax-reg , reproved from conditionless ZFC axioms. Usage of this theorem is discouraged because it depends on ax-13 . (Contributed by NM, 15-Aug-2003) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Assertion zfcndreg
|- ( E. y y e. x -> E. y ( y e. x /\ A. z ( z e. y -> -. z e. x ) ) )

Proof

Step Hyp Ref Expression
1 nfe1
 |-  F/ y E. y ( y e. x /\ A. z ( z e. y -> -. z e. x ) )
2 axregnd
 |-  ( y e. x -> E. y ( y e. x /\ A. z ( z e. y -> -. z e. x ) ) )
3 1 2 exlimi
 |-  ( E. y y e. x -> E. y ( y e. x /\ A. z ( z e. y -> -. z e. x ) ) )