Description: The Axiom of Pairing of Zermelo-Fraenkel set theory. Axiom 2 of TakeutiZaring p. 15. In some textbooks this is stated as a separate axiom; here we show it is redundant since it can be derived from the other axioms.
This theorem should not be referenced by any proof other than axprALT . Instead, use zfpair2 below so that the uses of the Axiom of Pairing can be more easily identified. (Contributed by NM, 18-Oct-1995) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | zfpair | |- { x , y } e. _V |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dfpr2 | |- { x , y } = { w | ( w = x \/ w = y ) } |
|
| 2 | 19.43 | |- ( E. z ( ( z = (/) /\ w = x ) \/ ( z = { (/) } /\ w = y ) ) <-> ( E. z ( z = (/) /\ w = x ) \/ E. z ( z = { (/) } /\ w = y ) ) ) |
|
| 3 | prlem2 | |- ( ( ( z = (/) /\ w = x ) \/ ( z = { (/) } /\ w = y ) ) <-> ( ( z = (/) \/ z = { (/) } ) /\ ( ( z = (/) /\ w = x ) \/ ( z = { (/) } /\ w = y ) ) ) ) |
|
| 4 | 3 | exbii | |- ( E. z ( ( z = (/) /\ w = x ) \/ ( z = { (/) } /\ w = y ) ) <-> E. z ( ( z = (/) \/ z = { (/) } ) /\ ( ( z = (/) /\ w = x ) \/ ( z = { (/) } /\ w = y ) ) ) ) |
| 5 | 0ex | |- (/) e. _V |
|
| 6 | 5 | isseti | |- E. z z = (/) |
| 7 | 19.41v | |- ( E. z ( z = (/) /\ w = x ) <-> ( E. z z = (/) /\ w = x ) ) |
|
| 8 | 6 7 | mpbiran | |- ( E. z ( z = (/) /\ w = x ) <-> w = x ) |
| 9 | p0ex | |- { (/) } e. _V |
|
| 10 | 9 | isseti | |- E. z z = { (/) } |
| 11 | 19.41v | |- ( E. z ( z = { (/) } /\ w = y ) <-> ( E. z z = { (/) } /\ w = y ) ) |
|
| 12 | 10 11 | mpbiran | |- ( E. z ( z = { (/) } /\ w = y ) <-> w = y ) |
| 13 | 8 12 | orbi12i | |- ( ( E. z ( z = (/) /\ w = x ) \/ E. z ( z = { (/) } /\ w = y ) ) <-> ( w = x \/ w = y ) ) |
| 14 | 2 4 13 | 3bitr3ri | |- ( ( w = x \/ w = y ) <-> E. z ( ( z = (/) \/ z = { (/) } ) /\ ( ( z = (/) /\ w = x ) \/ ( z = { (/) } /\ w = y ) ) ) ) |
| 15 | 14 | abbii | |- { w | ( w = x \/ w = y ) } = { w | E. z ( ( z = (/) \/ z = { (/) } ) /\ ( ( z = (/) /\ w = x ) \/ ( z = { (/) } /\ w = y ) ) ) } |
| 16 | dfpr2 | |- { (/) , { (/) } } = { z | ( z = (/) \/ z = { (/) } ) } |
|
| 17 | pp0ex | |- { (/) , { (/) } } e. _V |
|
| 18 | 16 17 | eqeltrri | |- { z | ( z = (/) \/ z = { (/) } ) } e. _V |
| 19 | equequ2 | |- ( v = x -> ( w = v <-> w = x ) ) |
|
| 20 | 0inp0 | |- ( z = (/) -> -. z = { (/) } ) |
|
| 21 | 19 20 | prlem1 | |- ( v = x -> ( z = (/) -> ( ( ( z = (/) /\ w = x ) \/ ( z = { (/) } /\ w = y ) ) -> w = v ) ) ) |
| 22 | 21 | alrimdv | |- ( v = x -> ( z = (/) -> A. w ( ( ( z = (/) /\ w = x ) \/ ( z = { (/) } /\ w = y ) ) -> w = v ) ) ) |
| 23 | 22 | spimevw | |- ( z = (/) -> E. v A. w ( ( ( z = (/) /\ w = x ) \/ ( z = { (/) } /\ w = y ) ) -> w = v ) ) |
| 24 | orcom | |- ( ( ( z = (/) /\ w = x ) \/ ( z = { (/) } /\ w = y ) ) <-> ( ( z = { (/) } /\ w = y ) \/ ( z = (/) /\ w = x ) ) ) |
|
| 25 | equequ2 | |- ( v = y -> ( w = v <-> w = y ) ) |
|
| 26 | 20 | con2i | |- ( z = { (/) } -> -. z = (/) ) |
| 27 | 25 26 | prlem1 | |- ( v = y -> ( z = { (/) } -> ( ( ( z = { (/) } /\ w = y ) \/ ( z = (/) /\ w = x ) ) -> w = v ) ) ) |
| 28 | 24 27 | syl7bi | |- ( v = y -> ( z = { (/) } -> ( ( ( z = (/) /\ w = x ) \/ ( z = { (/) } /\ w = y ) ) -> w = v ) ) ) |
| 29 | 28 | alrimdv | |- ( v = y -> ( z = { (/) } -> A. w ( ( ( z = (/) /\ w = x ) \/ ( z = { (/) } /\ w = y ) ) -> w = v ) ) ) |
| 30 | 29 | spimevw | |- ( z = { (/) } -> E. v A. w ( ( ( z = (/) /\ w = x ) \/ ( z = { (/) } /\ w = y ) ) -> w = v ) ) |
| 31 | 23 30 | jaoi | |- ( ( z = (/) \/ z = { (/) } ) -> E. v A. w ( ( ( z = (/) /\ w = x ) \/ ( z = { (/) } /\ w = y ) ) -> w = v ) ) |
| 32 | 18 31 | zfrep4 | |- { w | E. z ( ( z = (/) \/ z = { (/) } ) /\ ( ( z = (/) /\ w = x ) \/ ( z = { (/) } /\ w = y ) ) ) } e. _V |
| 33 | 15 32 | eqeltri | |- { w | ( w = x \/ w = y ) } e. _V |
| 34 | 1 33 | eqeltri | |- { x , y } e. _V |