| Step |
Hyp |
Ref |
Expression |
| 1 |
|
ax-pr |
|- E. z A. w ( ( w = x \/ w = y ) -> w e. z ) |
| 2 |
1
|
sepexi |
|- E. z A. w ( w e. z <-> ( w = x \/ w = y ) ) |
| 3 |
|
dfcleq |
|- ( z = { x , y } <-> A. w ( w e. z <-> w e. { x , y } ) ) |
| 4 |
|
vex |
|- w e. _V |
| 5 |
4
|
elpr |
|- ( w e. { x , y } <-> ( w = x \/ w = y ) ) |
| 6 |
5
|
bibi2i |
|- ( ( w e. z <-> w e. { x , y } ) <-> ( w e. z <-> ( w = x \/ w = y ) ) ) |
| 7 |
6
|
albii |
|- ( A. w ( w e. z <-> w e. { x , y } ) <-> A. w ( w e. z <-> ( w = x \/ w = y ) ) ) |
| 8 |
3 7
|
bitri |
|- ( z = { x , y } <-> A. w ( w e. z <-> ( w = x \/ w = y ) ) ) |
| 9 |
8
|
exbii |
|- ( E. z z = { x , y } <-> E. z A. w ( w e. z <-> ( w = x \/ w = y ) ) ) |
| 10 |
2 9
|
mpbir |
|- E. z z = { x , y } |
| 11 |
10
|
issetri |
|- { x , y } e. _V |