Description: An inference based on the Axiom of Replacement. Typically, ph defines a function from x to y . (Contributed by NM, 26-Nov-1995)
Ref | Expression | ||
---|---|---|---|
Hypotheses | zfrep3cl.1 | |- A e. _V |
|
zfrep3cl.2 | |- ( x e. A -> E. z A. y ( ph -> y = z ) ) |
||
Assertion | zfrep3cl | |- E. z A. y ( y e. z <-> E. x ( x e. A /\ ph ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | zfrep3cl.1 | |- A e. _V |
|
2 | zfrep3cl.2 | |- ( x e. A -> E. z A. y ( ph -> y = z ) ) |
|
3 | nfcv | |- F/_ x A |
|
4 | 3 1 2 | zfrepclf | |- E. z A. y ( y e. z <-> E. x ( x e. A /\ ph ) ) |