Metamath Proof Explorer


Theorem zgt1rpn0n1

Description: An integer greater than 1 is a positive real number not equal to 0 or 1. Useful for working with integer logarithm bases (which is a common case, e.g., base 2, base 3, or base 10). (Contributed by Thierry Arnoux, 26-Sep-2017) (Proof shortened by AV, 9-Jul-2022)

Ref Expression
Assertion zgt1rpn0n1
|- ( B e. ( ZZ>= ` 2 ) -> ( B e. RR+ /\ B =/= 0 /\ B =/= 1 ) )

Proof

Step Hyp Ref Expression
1 eluz2nn
 |-  ( B e. ( ZZ>= ` 2 ) -> B e. NN )
2 1 nnrpd
 |-  ( B e. ( ZZ>= ` 2 ) -> B e. RR+ )
3 eluz2n0
 |-  ( B e. ( ZZ>= ` 2 ) -> B =/= 0 )
4 1nuz2
 |-  -. 1 e. ( ZZ>= ` 2 )
5 nelne2
 |-  ( ( B e. ( ZZ>= ` 2 ) /\ -. 1 e. ( ZZ>= ` 2 ) ) -> B =/= 1 )
6 4 5 mpan2
 |-  ( B e. ( ZZ>= ` 2 ) -> B =/= 1 )
7 2 3 6 3jca
 |-  ( B e. ( ZZ>= ` 2 ) -> ( B e. RR+ /\ B =/= 0 /\ B =/= 1 ) )