Step |
Hyp |
Ref |
Expression |
1 |
|
zlmassa.w |
|- W = ( ZMod ` G ) |
2 |
|
eqid |
|- ( Base ` G ) = ( Base ` G ) |
3 |
1 2
|
zlmbas |
|- ( Base ` G ) = ( Base ` W ) |
4 |
3
|
a1i |
|- ( G e. Ring -> ( Base ` G ) = ( Base ` W ) ) |
5 |
1
|
zlmsca |
|- ( G e. Ring -> ZZring = ( Scalar ` W ) ) |
6 |
|
zringbas |
|- ZZ = ( Base ` ZZring ) |
7 |
6
|
a1i |
|- ( G e. Ring -> ZZ = ( Base ` ZZring ) ) |
8 |
|
eqid |
|- ( .g ` G ) = ( .g ` G ) |
9 |
1 8
|
zlmvsca |
|- ( .g ` G ) = ( .s ` W ) |
10 |
9
|
a1i |
|- ( G e. Ring -> ( .g ` G ) = ( .s ` W ) ) |
11 |
|
eqid |
|- ( .r ` G ) = ( .r ` G ) |
12 |
1 11
|
zlmmulr |
|- ( .r ` G ) = ( .r ` W ) |
13 |
12
|
a1i |
|- ( G e. Ring -> ( .r ` G ) = ( .r ` W ) ) |
14 |
|
ringabl |
|- ( G e. Ring -> G e. Abel ) |
15 |
1
|
zlmlmod |
|- ( G e. Abel <-> W e. LMod ) |
16 |
14 15
|
sylib |
|- ( G e. Ring -> W e. LMod ) |
17 |
|
eqid |
|- ( +g ` G ) = ( +g ` G ) |
18 |
1 17
|
zlmplusg |
|- ( +g ` G ) = ( +g ` W ) |
19 |
3 18 12
|
ringprop |
|- ( G e. Ring <-> W e. Ring ) |
20 |
19
|
biimpi |
|- ( G e. Ring -> W e. Ring ) |
21 |
|
zringcrng |
|- ZZring e. CRing |
22 |
21
|
a1i |
|- ( G e. Ring -> ZZring e. CRing ) |
23 |
2 8 11
|
mulgass2 |
|- ( ( G e. Ring /\ ( x e. ZZ /\ y e. ( Base ` G ) /\ z e. ( Base ` G ) ) ) -> ( ( x ( .g ` G ) y ) ( .r ` G ) z ) = ( x ( .g ` G ) ( y ( .r ` G ) z ) ) ) |
24 |
2 8 11
|
mulgass3 |
|- ( ( G e. Ring /\ ( x e. ZZ /\ y e. ( Base ` G ) /\ z e. ( Base ` G ) ) ) -> ( y ( .r ` G ) ( x ( .g ` G ) z ) ) = ( x ( .g ` G ) ( y ( .r ` G ) z ) ) ) |
25 |
4 5 7 10 13 16 20 22 23 24
|
isassad |
|- ( G e. Ring -> W e. AssAlg ) |
26 |
|
assaring |
|- ( W e. AssAlg -> W e. Ring ) |
27 |
26 19
|
sylibr |
|- ( W e. AssAlg -> G e. Ring ) |
28 |
25 27
|
impbii |
|- ( G e. Ring <-> W e. AssAlg ) |