| Step | Hyp | Ref | Expression | 
						
							| 1 |  | zlmassa.w |  |-  W = ( ZMod ` G ) | 
						
							| 2 |  | eqid |  |-  ( Base ` G ) = ( Base ` G ) | 
						
							| 3 | 1 2 | zlmbas |  |-  ( Base ` G ) = ( Base ` W ) | 
						
							| 4 | 3 | a1i |  |-  ( G e. Ring -> ( Base ` G ) = ( Base ` W ) ) | 
						
							| 5 | 1 | zlmsca |  |-  ( G e. Ring -> ZZring = ( Scalar ` W ) ) | 
						
							| 6 |  | zringbas |  |-  ZZ = ( Base ` ZZring ) | 
						
							| 7 | 6 | a1i |  |-  ( G e. Ring -> ZZ = ( Base ` ZZring ) ) | 
						
							| 8 |  | eqid |  |-  ( .g ` G ) = ( .g ` G ) | 
						
							| 9 | 1 8 | zlmvsca |  |-  ( .g ` G ) = ( .s ` W ) | 
						
							| 10 | 9 | a1i |  |-  ( G e. Ring -> ( .g ` G ) = ( .s ` W ) ) | 
						
							| 11 |  | eqid |  |-  ( .r ` G ) = ( .r ` G ) | 
						
							| 12 | 1 11 | zlmmulr |  |-  ( .r ` G ) = ( .r ` W ) | 
						
							| 13 | 12 | a1i |  |-  ( G e. Ring -> ( .r ` G ) = ( .r ` W ) ) | 
						
							| 14 |  | ringabl |  |-  ( G e. Ring -> G e. Abel ) | 
						
							| 15 | 1 | zlmlmod |  |-  ( G e. Abel <-> W e. LMod ) | 
						
							| 16 | 14 15 | sylib |  |-  ( G e. Ring -> W e. LMod ) | 
						
							| 17 |  | eqid |  |-  ( +g ` G ) = ( +g ` G ) | 
						
							| 18 | 1 17 | zlmplusg |  |-  ( +g ` G ) = ( +g ` W ) | 
						
							| 19 | 3 18 12 | ringprop |  |-  ( G e. Ring <-> W e. Ring ) | 
						
							| 20 | 19 | biimpi |  |-  ( G e. Ring -> W e. Ring ) | 
						
							| 21 | 2 8 11 | mulgass2 |  |-  ( ( G e. Ring /\ ( x e. ZZ /\ y e. ( Base ` G ) /\ z e. ( Base ` G ) ) ) -> ( ( x ( .g ` G ) y ) ( .r ` G ) z ) = ( x ( .g ` G ) ( y ( .r ` G ) z ) ) ) | 
						
							| 22 | 2 8 11 | mulgass3 |  |-  ( ( G e. Ring /\ ( x e. ZZ /\ y e. ( Base ` G ) /\ z e. ( Base ` G ) ) ) -> ( y ( .r ` G ) ( x ( .g ` G ) z ) ) = ( x ( .g ` G ) ( y ( .r ` G ) z ) ) ) | 
						
							| 23 | 4 5 7 10 13 16 20 21 22 | isassad |  |-  ( G e. Ring -> W e. AssAlg ) | 
						
							| 24 |  | assaring |  |-  ( W e. AssAlg -> W e. Ring ) | 
						
							| 25 | 24 19 | sylibr |  |-  ( W e. AssAlg -> G e. Ring ) | 
						
							| 26 | 23 25 | impbii |  |-  ( G e. Ring <-> W e. AssAlg ) |