Description: Base set of a ZZ -module. (Contributed by Mario Carneiro, 2-Oct-2015) (Revised by AV, 3-Nov-2024)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | zlmbas.w | |- W = ( ZMod ` G ) | |
| zlmbas.2 | |- B = ( Base ` G ) | ||
| Assertion | zlmbas | |- B = ( Base ` W ) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | zlmbas.w | |- W = ( ZMod ` G ) | |
| 2 | zlmbas.2 | |- B = ( Base ` G ) | |
| 3 | baseid | |- Base = Slot ( Base ` ndx ) | |
| 4 | scandxnbasendx | |- ( Scalar ` ndx ) =/= ( Base ` ndx ) | |
| 5 | 4 | necomi | |- ( Base ` ndx ) =/= ( Scalar ` ndx ) | 
| 6 | vscandxnbasendx | |- ( .s ` ndx ) =/= ( Base ` ndx ) | |
| 7 | 6 | necomi | |- ( Base ` ndx ) =/= ( .s ` ndx ) | 
| 8 | 1 3 5 7 | zlmlem | |- ( Base ` G ) = ( Base ` W ) | 
| 9 | 2 8 | eqtri | |- B = ( Base ` W ) |