Step |
Hyp |
Ref |
Expression |
1 |
|
zlmbas.w |
|- W = ( ZMod ` G ) |
2 |
|
zlmlem.2 |
|- E = Slot N |
3 |
|
zlmlem.3 |
|- N e. NN |
4 |
|
zlmlem.4 |
|- N < 5 |
5 |
2 3
|
ndxid |
|- E = Slot ( E ` ndx ) |
6 |
2 3
|
ndxarg |
|- ( E ` ndx ) = N |
7 |
3
|
nnrei |
|- N e. RR |
8 |
6 7
|
eqeltri |
|- ( E ` ndx ) e. RR |
9 |
6 4
|
eqbrtri |
|- ( E ` ndx ) < 5 |
10 |
8 9
|
ltneii |
|- ( E ` ndx ) =/= 5 |
11 |
|
scandx |
|- ( Scalar ` ndx ) = 5 |
12 |
10 11
|
neeqtrri |
|- ( E ` ndx ) =/= ( Scalar ` ndx ) |
13 |
5 12
|
setsnid |
|- ( E ` G ) = ( E ` ( G sSet <. ( Scalar ` ndx ) , ZZring >. ) ) |
14 |
|
5lt6 |
|- 5 < 6 |
15 |
|
5re |
|- 5 e. RR |
16 |
|
6re |
|- 6 e. RR |
17 |
8 15 16
|
lttri |
|- ( ( ( E ` ndx ) < 5 /\ 5 < 6 ) -> ( E ` ndx ) < 6 ) |
18 |
9 14 17
|
mp2an |
|- ( E ` ndx ) < 6 |
19 |
8 18
|
ltneii |
|- ( E ` ndx ) =/= 6 |
20 |
|
vscandx |
|- ( .s ` ndx ) = 6 |
21 |
19 20
|
neeqtrri |
|- ( E ` ndx ) =/= ( .s ` ndx ) |
22 |
5 21
|
setsnid |
|- ( E ` ( G sSet <. ( Scalar ` ndx ) , ZZring >. ) ) = ( E ` ( ( G sSet <. ( Scalar ` ndx ) , ZZring >. ) sSet <. ( .s ` ndx ) , ( .g ` G ) >. ) ) |
23 |
13 22
|
eqtri |
|- ( E ` G ) = ( E ` ( ( G sSet <. ( Scalar ` ndx ) , ZZring >. ) sSet <. ( .s ` ndx ) , ( .g ` G ) >. ) ) |
24 |
|
eqid |
|- ( .g ` G ) = ( .g ` G ) |
25 |
1 24
|
zlmval |
|- ( G e. _V -> W = ( ( G sSet <. ( Scalar ` ndx ) , ZZring >. ) sSet <. ( .s ` ndx ) , ( .g ` G ) >. ) ) |
26 |
25
|
fveq2d |
|- ( G e. _V -> ( E ` W ) = ( E ` ( ( G sSet <. ( Scalar ` ndx ) , ZZring >. ) sSet <. ( .s ` ndx ) , ( .g ` G ) >. ) ) ) |
27 |
23 26
|
eqtr4id |
|- ( G e. _V -> ( E ` G ) = ( E ` W ) ) |
28 |
2
|
str0 |
|- (/) = ( E ` (/) ) |
29 |
|
fvprc |
|- ( -. G e. _V -> ( E ` G ) = (/) ) |
30 |
|
fvprc |
|- ( -. G e. _V -> ( ZMod ` G ) = (/) ) |
31 |
1 30
|
eqtrid |
|- ( -. G e. _V -> W = (/) ) |
32 |
31
|
fveq2d |
|- ( -. G e. _V -> ( E ` W ) = ( E ` (/) ) ) |
33 |
28 29 32
|
3eqtr4a |
|- ( -. G e. _V -> ( E ` G ) = ( E ` W ) ) |
34 |
27 33
|
pm2.61i |
|- ( E ` G ) = ( E ` W ) |