| Step | Hyp | Ref | Expression | 
						
							| 1 |  | zlmbas.w |  |-  W = ( ZMod ` G ) | 
						
							| 2 |  | zlmlem.2 |  |-  E = Slot ( E ` ndx ) | 
						
							| 3 |  | zlmlem.3 |  |-  ( E ` ndx ) =/= ( Scalar ` ndx ) | 
						
							| 4 |  | zlmlem.4 |  |-  ( E ` ndx ) =/= ( .s ` ndx ) | 
						
							| 5 | 2 3 | setsnid |  |-  ( E ` G ) = ( E ` ( G sSet <. ( Scalar ` ndx ) , ZZring >. ) ) | 
						
							| 6 | 2 4 | setsnid |  |-  ( E ` ( G sSet <. ( Scalar ` ndx ) , ZZring >. ) ) = ( E ` ( ( G sSet <. ( Scalar ` ndx ) , ZZring >. ) sSet <. ( .s ` ndx ) , ( .g ` G ) >. ) ) | 
						
							| 7 | 5 6 | eqtri |  |-  ( E ` G ) = ( E ` ( ( G sSet <. ( Scalar ` ndx ) , ZZring >. ) sSet <. ( .s ` ndx ) , ( .g ` G ) >. ) ) | 
						
							| 8 |  | eqid |  |-  ( .g ` G ) = ( .g ` G ) | 
						
							| 9 | 1 8 | zlmval |  |-  ( G e. _V -> W = ( ( G sSet <. ( Scalar ` ndx ) , ZZring >. ) sSet <. ( .s ` ndx ) , ( .g ` G ) >. ) ) | 
						
							| 10 | 9 | fveq2d |  |-  ( G e. _V -> ( E ` W ) = ( E ` ( ( G sSet <. ( Scalar ` ndx ) , ZZring >. ) sSet <. ( .s ` ndx ) , ( .g ` G ) >. ) ) ) | 
						
							| 11 | 7 10 | eqtr4id |  |-  ( G e. _V -> ( E ` G ) = ( E ` W ) ) | 
						
							| 12 | 2 | str0 |  |-  (/) = ( E ` (/) ) | 
						
							| 13 | 12 | eqcomi |  |-  ( E ` (/) ) = (/) | 
						
							| 14 | 13 1 | fveqprc |  |-  ( -. G e. _V -> ( E ` G ) = ( E ` W ) ) | 
						
							| 15 | 11 14 | pm2.61i |  |-  ( E ` G ) = ( E ` W ) |