| Step | Hyp | Ref | Expression | 
						
							| 1 |  | zlmbas.w |  |-  W = ( ZMod ` G ) | 
						
							| 2 |  | zlmlemOLD.2 |  |-  E = Slot N | 
						
							| 3 |  | zlmlemOLD.3 |  |-  N e. NN | 
						
							| 4 |  | zlmlemOLD.4 |  |-  N < 5 | 
						
							| 5 | 2 3 | ndxid |  |-  E = Slot ( E ` ndx ) | 
						
							| 6 | 2 3 | ndxarg |  |-  ( E ` ndx ) = N | 
						
							| 7 | 3 | nnrei |  |-  N e. RR | 
						
							| 8 | 6 7 | eqeltri |  |-  ( E ` ndx ) e. RR | 
						
							| 9 | 6 4 | eqbrtri |  |-  ( E ` ndx ) < 5 | 
						
							| 10 | 8 9 | ltneii |  |-  ( E ` ndx ) =/= 5 | 
						
							| 11 |  | scandx |  |-  ( Scalar ` ndx ) = 5 | 
						
							| 12 | 10 11 | neeqtrri |  |-  ( E ` ndx ) =/= ( Scalar ` ndx ) | 
						
							| 13 | 5 12 | setsnid |  |-  ( E ` G ) = ( E ` ( G sSet <. ( Scalar ` ndx ) , ZZring >. ) ) | 
						
							| 14 |  | 5lt6 |  |-  5 < 6 | 
						
							| 15 |  | 5re |  |-  5 e. RR | 
						
							| 16 |  | 6re |  |-  6 e. RR | 
						
							| 17 | 8 15 16 | lttri |  |-  ( ( ( E ` ndx ) < 5 /\ 5 < 6 ) -> ( E ` ndx ) < 6 ) | 
						
							| 18 | 9 14 17 | mp2an |  |-  ( E ` ndx ) < 6 | 
						
							| 19 | 8 18 | ltneii |  |-  ( E ` ndx ) =/= 6 | 
						
							| 20 |  | vscandx |  |-  ( .s ` ndx ) = 6 | 
						
							| 21 | 19 20 | neeqtrri |  |-  ( E ` ndx ) =/= ( .s ` ndx ) | 
						
							| 22 | 5 21 | setsnid |  |-  ( E ` ( G sSet <. ( Scalar ` ndx ) , ZZring >. ) ) = ( E ` ( ( G sSet <. ( Scalar ` ndx ) , ZZring >. ) sSet <. ( .s ` ndx ) , ( .g ` G ) >. ) ) | 
						
							| 23 | 13 22 | eqtri |  |-  ( E ` G ) = ( E ` ( ( G sSet <. ( Scalar ` ndx ) , ZZring >. ) sSet <. ( .s ` ndx ) , ( .g ` G ) >. ) ) | 
						
							| 24 |  | eqid |  |-  ( .g ` G ) = ( .g ` G ) | 
						
							| 25 | 1 24 | zlmval |  |-  ( G e. _V -> W = ( ( G sSet <. ( Scalar ` ndx ) , ZZring >. ) sSet <. ( .s ` ndx ) , ( .g ` G ) >. ) ) | 
						
							| 26 | 25 | fveq2d |  |-  ( G e. _V -> ( E ` W ) = ( E ` ( ( G sSet <. ( Scalar ` ndx ) , ZZring >. ) sSet <. ( .s ` ndx ) , ( .g ` G ) >. ) ) ) | 
						
							| 27 | 23 26 | eqtr4id |  |-  ( G e. _V -> ( E ` G ) = ( E ` W ) ) | 
						
							| 28 | 2 | str0 |  |-  (/) = ( E ` (/) ) | 
						
							| 29 |  | fvprc |  |-  ( -. G e. _V -> ( E ` G ) = (/) ) | 
						
							| 30 |  | fvprc |  |-  ( -. G e. _V -> ( ZMod ` G ) = (/) ) | 
						
							| 31 | 1 30 | eqtrid |  |-  ( -. G e. _V -> W = (/) ) | 
						
							| 32 | 31 | fveq2d |  |-  ( -. G e. _V -> ( E ` W ) = ( E ` (/) ) ) | 
						
							| 33 | 28 29 32 | 3eqtr4a |  |-  ( -. G e. _V -> ( E ` G ) = ( E ` W ) ) | 
						
							| 34 | 27 33 | pm2.61i |  |-  ( E ` G ) = ( E ` W ) |