| Step | Hyp | Ref | Expression | 
						
							| 1 |  | zlmlmod.w |  |-  W = ( ZMod ` G ) | 
						
							| 2 |  | eqid |  |-  ( Base ` G ) = ( Base ` G ) | 
						
							| 3 | 1 2 | zlmbas |  |-  ( Base ` G ) = ( Base ` W ) | 
						
							| 4 | 3 | a1i |  |-  ( G e. Abel -> ( Base ` G ) = ( Base ` W ) ) | 
						
							| 5 |  | eqid |  |-  ( +g ` G ) = ( +g ` G ) | 
						
							| 6 | 1 5 | zlmplusg |  |-  ( +g ` G ) = ( +g ` W ) | 
						
							| 7 | 6 | a1i |  |-  ( G e. Abel -> ( +g ` G ) = ( +g ` W ) ) | 
						
							| 8 | 1 | zlmsca |  |-  ( G e. Abel -> ZZring = ( Scalar ` W ) ) | 
						
							| 9 |  | eqid |  |-  ( .g ` G ) = ( .g ` G ) | 
						
							| 10 | 1 9 | zlmvsca |  |-  ( .g ` G ) = ( .s ` W ) | 
						
							| 11 | 10 | a1i |  |-  ( G e. Abel -> ( .g ` G ) = ( .s ` W ) ) | 
						
							| 12 |  | zringbas |  |-  ZZ = ( Base ` ZZring ) | 
						
							| 13 | 12 | a1i |  |-  ( G e. Abel -> ZZ = ( Base ` ZZring ) ) | 
						
							| 14 |  | zringplusg |  |-  + = ( +g ` ZZring ) | 
						
							| 15 | 14 | a1i |  |-  ( G e. Abel -> + = ( +g ` ZZring ) ) | 
						
							| 16 |  | zringmulr |  |-  x. = ( .r ` ZZring ) | 
						
							| 17 | 16 | a1i |  |-  ( G e. Abel -> x. = ( .r ` ZZring ) ) | 
						
							| 18 |  | zring1 |  |-  1 = ( 1r ` ZZring ) | 
						
							| 19 | 18 | a1i |  |-  ( G e. Abel -> 1 = ( 1r ` ZZring ) ) | 
						
							| 20 |  | zringring |  |-  ZZring e. Ring | 
						
							| 21 | 20 | a1i |  |-  ( G e. Abel -> ZZring e. Ring ) | 
						
							| 22 | 3 6 | ablprop |  |-  ( G e. Abel <-> W e. Abel ) | 
						
							| 23 |  | ablgrp |  |-  ( W e. Abel -> W e. Grp ) | 
						
							| 24 | 22 23 | sylbi |  |-  ( G e. Abel -> W e. Grp ) | 
						
							| 25 |  | ablgrp |  |-  ( G e. Abel -> G e. Grp ) | 
						
							| 26 | 2 9 | mulgcl |  |-  ( ( G e. Grp /\ x e. ZZ /\ y e. ( Base ` G ) ) -> ( x ( .g ` G ) y ) e. ( Base ` G ) ) | 
						
							| 27 | 25 26 | syl3an1 |  |-  ( ( G e. Abel /\ x e. ZZ /\ y e. ( Base ` G ) ) -> ( x ( .g ` G ) y ) e. ( Base ` G ) ) | 
						
							| 28 | 2 9 5 | mulgdi |  |-  ( ( G e. Abel /\ ( x e. ZZ /\ y e. ( Base ` G ) /\ z e. ( Base ` G ) ) ) -> ( x ( .g ` G ) ( y ( +g ` G ) z ) ) = ( ( x ( .g ` G ) y ) ( +g ` G ) ( x ( .g ` G ) z ) ) ) | 
						
							| 29 | 2 9 5 | mulgdir |  |-  ( ( G e. Grp /\ ( x e. ZZ /\ y e. ZZ /\ z e. ( Base ` G ) ) ) -> ( ( x + y ) ( .g ` G ) z ) = ( ( x ( .g ` G ) z ) ( +g ` G ) ( y ( .g ` G ) z ) ) ) | 
						
							| 30 | 25 29 | sylan |  |-  ( ( G e. Abel /\ ( x e. ZZ /\ y e. ZZ /\ z e. ( Base ` G ) ) ) -> ( ( x + y ) ( .g ` G ) z ) = ( ( x ( .g ` G ) z ) ( +g ` G ) ( y ( .g ` G ) z ) ) ) | 
						
							| 31 | 2 9 | mulgass |  |-  ( ( G e. Grp /\ ( x e. ZZ /\ y e. ZZ /\ z e. ( Base ` G ) ) ) -> ( ( x x. y ) ( .g ` G ) z ) = ( x ( .g ` G ) ( y ( .g ` G ) z ) ) ) | 
						
							| 32 | 25 31 | sylan |  |-  ( ( G e. Abel /\ ( x e. ZZ /\ y e. ZZ /\ z e. ( Base ` G ) ) ) -> ( ( x x. y ) ( .g ` G ) z ) = ( x ( .g ` G ) ( y ( .g ` G ) z ) ) ) | 
						
							| 33 | 2 9 | mulg1 |  |-  ( x e. ( Base ` G ) -> ( 1 ( .g ` G ) x ) = x ) | 
						
							| 34 | 33 | adantl |  |-  ( ( G e. Abel /\ x e. ( Base ` G ) ) -> ( 1 ( .g ` G ) x ) = x ) | 
						
							| 35 | 4 7 8 11 13 15 17 19 21 24 27 28 30 32 34 | islmodd |  |-  ( G e. Abel -> W e. LMod ) | 
						
							| 36 |  | lmodabl |  |-  ( W e. LMod -> W e. Abel ) | 
						
							| 37 | 36 22 | sylibr |  |-  ( W e. LMod -> G e. Abel ) | 
						
							| 38 | 35 37 | impbii |  |-  ( G e. Abel <-> W e. LMod ) |