Step |
Hyp |
Ref |
Expression |
1 |
|
zlmlmod.w |
|- W = ( ZMod ` G ) |
2 |
|
eqid |
|- ( Base ` G ) = ( Base ` G ) |
3 |
1 2
|
zlmbas |
|- ( Base ` G ) = ( Base ` W ) |
4 |
3
|
a1i |
|- ( G e. Abel -> ( Base ` G ) = ( Base ` W ) ) |
5 |
|
eqid |
|- ( +g ` G ) = ( +g ` G ) |
6 |
1 5
|
zlmplusg |
|- ( +g ` G ) = ( +g ` W ) |
7 |
6
|
a1i |
|- ( G e. Abel -> ( +g ` G ) = ( +g ` W ) ) |
8 |
1
|
zlmsca |
|- ( G e. Abel -> ZZring = ( Scalar ` W ) ) |
9 |
|
eqid |
|- ( .g ` G ) = ( .g ` G ) |
10 |
1 9
|
zlmvsca |
|- ( .g ` G ) = ( .s ` W ) |
11 |
10
|
a1i |
|- ( G e. Abel -> ( .g ` G ) = ( .s ` W ) ) |
12 |
|
zringbas |
|- ZZ = ( Base ` ZZring ) |
13 |
12
|
a1i |
|- ( G e. Abel -> ZZ = ( Base ` ZZring ) ) |
14 |
|
zringplusg |
|- + = ( +g ` ZZring ) |
15 |
14
|
a1i |
|- ( G e. Abel -> + = ( +g ` ZZring ) ) |
16 |
|
zringmulr |
|- x. = ( .r ` ZZring ) |
17 |
16
|
a1i |
|- ( G e. Abel -> x. = ( .r ` ZZring ) ) |
18 |
|
zring1 |
|- 1 = ( 1r ` ZZring ) |
19 |
18
|
a1i |
|- ( G e. Abel -> 1 = ( 1r ` ZZring ) ) |
20 |
|
zringring |
|- ZZring e. Ring |
21 |
20
|
a1i |
|- ( G e. Abel -> ZZring e. Ring ) |
22 |
3 6
|
ablprop |
|- ( G e. Abel <-> W e. Abel ) |
23 |
|
ablgrp |
|- ( W e. Abel -> W e. Grp ) |
24 |
22 23
|
sylbi |
|- ( G e. Abel -> W e. Grp ) |
25 |
|
ablgrp |
|- ( G e. Abel -> G e. Grp ) |
26 |
2 9
|
mulgcl |
|- ( ( G e. Grp /\ x e. ZZ /\ y e. ( Base ` G ) ) -> ( x ( .g ` G ) y ) e. ( Base ` G ) ) |
27 |
25 26
|
syl3an1 |
|- ( ( G e. Abel /\ x e. ZZ /\ y e. ( Base ` G ) ) -> ( x ( .g ` G ) y ) e. ( Base ` G ) ) |
28 |
2 9 5
|
mulgdi |
|- ( ( G e. Abel /\ ( x e. ZZ /\ y e. ( Base ` G ) /\ z e. ( Base ` G ) ) ) -> ( x ( .g ` G ) ( y ( +g ` G ) z ) ) = ( ( x ( .g ` G ) y ) ( +g ` G ) ( x ( .g ` G ) z ) ) ) |
29 |
2 9 5
|
mulgdir |
|- ( ( G e. Grp /\ ( x e. ZZ /\ y e. ZZ /\ z e. ( Base ` G ) ) ) -> ( ( x + y ) ( .g ` G ) z ) = ( ( x ( .g ` G ) z ) ( +g ` G ) ( y ( .g ` G ) z ) ) ) |
30 |
25 29
|
sylan |
|- ( ( G e. Abel /\ ( x e. ZZ /\ y e. ZZ /\ z e. ( Base ` G ) ) ) -> ( ( x + y ) ( .g ` G ) z ) = ( ( x ( .g ` G ) z ) ( +g ` G ) ( y ( .g ` G ) z ) ) ) |
31 |
2 9
|
mulgass |
|- ( ( G e. Grp /\ ( x e. ZZ /\ y e. ZZ /\ z e. ( Base ` G ) ) ) -> ( ( x x. y ) ( .g ` G ) z ) = ( x ( .g ` G ) ( y ( .g ` G ) z ) ) ) |
32 |
25 31
|
sylan |
|- ( ( G e. Abel /\ ( x e. ZZ /\ y e. ZZ /\ z e. ( Base ` G ) ) ) -> ( ( x x. y ) ( .g ` G ) z ) = ( x ( .g ` G ) ( y ( .g ` G ) z ) ) ) |
33 |
2 9
|
mulg1 |
|- ( x e. ( Base ` G ) -> ( 1 ( .g ` G ) x ) = x ) |
34 |
33
|
adantl |
|- ( ( G e. Abel /\ x e. ( Base ` G ) ) -> ( 1 ( .g ` G ) x ) = x ) |
35 |
4 7 8 11 13 15 17 19 21 24 27 28 30 32 34
|
islmodd |
|- ( G e. Abel -> W e. LMod ) |
36 |
|
lmodabl |
|- ( W e. LMod -> W e. Abel ) |
37 |
36 22
|
sylibr |
|- ( W e. LMod -> G e. Abel ) |
38 |
35 37
|
impbii |
|- ( G e. Abel <-> W e. LMod ) |