Description: Ring operation of a ZZ -module (if present). (Contributed by Mario Carneiro, 2-Oct-2015) (Revised by AV, 3-Nov-2024)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | zlmbas.w | |- W = ( ZMod ` G ) | |
| zlmmulr.2 | |- .x. = ( .r ` G ) | ||
| Assertion | zlmmulr | |- .x. = ( .r ` W ) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | zlmbas.w | |- W = ( ZMod ` G ) | |
| 2 | zlmmulr.2 | |- .x. = ( .r ` G ) | |
| 3 | mulridx | |- .r = Slot ( .r ` ndx ) | |
| 4 | scandxnmulrndx | |- ( Scalar ` ndx ) =/= ( .r ` ndx ) | |
| 5 | 4 | necomi | |- ( .r ` ndx ) =/= ( Scalar ` ndx ) | 
| 6 | vscandxnmulrndx | |- ( .s ` ndx ) =/= ( .r ` ndx ) | |
| 7 | 6 | necomi | |- ( .r ` ndx ) =/= ( .s ` ndx ) | 
| 8 | 1 3 5 7 | zlmlem | |- ( .r ` G ) = ( .r ` W ) | 
| 9 | 2 8 | eqtri | |- .x. = ( .r ` W ) |