Step |
Hyp |
Ref |
Expression |
1 |
|
zlmbas.w |
|- W = ( ZMod ` G ) |
2 |
|
scaid |
|- Scalar = Slot ( Scalar ` ndx ) |
3 |
|
5re |
|- 5 e. RR |
4 |
|
5lt6 |
|- 5 < 6 |
5 |
3 4
|
ltneii |
|- 5 =/= 6 |
6 |
|
scandx |
|- ( Scalar ` ndx ) = 5 |
7 |
|
vscandx |
|- ( .s ` ndx ) = 6 |
8 |
6 7
|
neeq12i |
|- ( ( Scalar ` ndx ) =/= ( .s ` ndx ) <-> 5 =/= 6 ) |
9 |
5 8
|
mpbir |
|- ( Scalar ` ndx ) =/= ( .s ` ndx ) |
10 |
2 9
|
setsnid |
|- ( Scalar ` ( G sSet <. ( Scalar ` ndx ) , ZZring >. ) ) = ( Scalar ` ( ( G sSet <. ( Scalar ` ndx ) , ZZring >. ) sSet <. ( .s ` ndx ) , ( .g ` G ) >. ) ) |
11 |
|
zringring |
|- ZZring e. Ring |
12 |
2
|
setsid |
|- ( ( G e. V /\ ZZring e. Ring ) -> ZZring = ( Scalar ` ( G sSet <. ( Scalar ` ndx ) , ZZring >. ) ) ) |
13 |
11 12
|
mpan2 |
|- ( G e. V -> ZZring = ( Scalar ` ( G sSet <. ( Scalar ` ndx ) , ZZring >. ) ) ) |
14 |
|
eqid |
|- ( .g ` G ) = ( .g ` G ) |
15 |
1 14
|
zlmval |
|- ( G e. V -> W = ( ( G sSet <. ( Scalar ` ndx ) , ZZring >. ) sSet <. ( .s ` ndx ) , ( .g ` G ) >. ) ) |
16 |
15
|
fveq2d |
|- ( G e. V -> ( Scalar ` W ) = ( Scalar ` ( ( G sSet <. ( Scalar ` ndx ) , ZZring >. ) sSet <. ( .s ` ndx ) , ( .g ` G ) >. ) ) ) |
17 |
10 13 16
|
3eqtr4a |
|- ( G e. V -> ZZring = ( Scalar ` W ) ) |