| Step | Hyp | Ref | Expression | 
						
							| 1 |  | zlmbas.w |  |-  W = ( ZMod ` G ) | 
						
							| 2 |  | scaid |  |-  Scalar = Slot ( Scalar ` ndx ) | 
						
							| 3 |  | vscandxnscandx |  |-  ( .s ` ndx ) =/= ( Scalar ` ndx ) | 
						
							| 4 | 3 | necomi |  |-  ( Scalar ` ndx ) =/= ( .s ` ndx ) | 
						
							| 5 | 2 4 | setsnid |  |-  ( Scalar ` ( G sSet <. ( Scalar ` ndx ) , ZZring >. ) ) = ( Scalar ` ( ( G sSet <. ( Scalar ` ndx ) , ZZring >. ) sSet <. ( .s ` ndx ) , ( .g ` G ) >. ) ) | 
						
							| 6 |  | zringring |  |-  ZZring e. Ring | 
						
							| 7 | 2 | setsid |  |-  ( ( G e. V /\ ZZring e. Ring ) -> ZZring = ( Scalar ` ( G sSet <. ( Scalar ` ndx ) , ZZring >. ) ) ) | 
						
							| 8 | 6 7 | mpan2 |  |-  ( G e. V -> ZZring = ( Scalar ` ( G sSet <. ( Scalar ` ndx ) , ZZring >. ) ) ) | 
						
							| 9 |  | eqid |  |-  ( .g ` G ) = ( .g ` G ) | 
						
							| 10 | 1 9 | zlmval |  |-  ( G e. V -> W = ( ( G sSet <. ( Scalar ` ndx ) , ZZring >. ) sSet <. ( .s ` ndx ) , ( .g ` G ) >. ) ) | 
						
							| 11 | 10 | fveq2d |  |-  ( G e. V -> ( Scalar ` W ) = ( Scalar ` ( ( G sSet <. ( Scalar ` ndx ) , ZZring >. ) sSet <. ( .s ` ndx ) , ( .g ` G ) >. ) ) ) | 
						
							| 12 | 5 8 11 | 3eqtr4a |  |-  ( G e. V -> ZZring = ( Scalar ` W ) ) |