Step |
Hyp |
Ref |
Expression |
1 |
|
zlmval.w |
|- W = ( ZMod ` G ) |
2 |
|
zlmval.m |
|- .x. = ( .g ` G ) |
3 |
|
elex |
|- ( G e. V -> G e. _V ) |
4 |
|
oveq1 |
|- ( g = G -> ( g sSet <. ( Scalar ` ndx ) , ZZring >. ) = ( G sSet <. ( Scalar ` ndx ) , ZZring >. ) ) |
5 |
|
fveq2 |
|- ( g = G -> ( .g ` g ) = ( .g ` G ) ) |
6 |
5 2
|
eqtr4di |
|- ( g = G -> ( .g ` g ) = .x. ) |
7 |
6
|
opeq2d |
|- ( g = G -> <. ( .s ` ndx ) , ( .g ` g ) >. = <. ( .s ` ndx ) , .x. >. ) |
8 |
4 7
|
oveq12d |
|- ( g = G -> ( ( g sSet <. ( Scalar ` ndx ) , ZZring >. ) sSet <. ( .s ` ndx ) , ( .g ` g ) >. ) = ( ( G sSet <. ( Scalar ` ndx ) , ZZring >. ) sSet <. ( .s ` ndx ) , .x. >. ) ) |
9 |
|
df-zlm |
|- ZMod = ( g e. _V |-> ( ( g sSet <. ( Scalar ` ndx ) , ZZring >. ) sSet <. ( .s ` ndx ) , ( .g ` g ) >. ) ) |
10 |
|
ovex |
|- ( ( G sSet <. ( Scalar ` ndx ) , ZZring >. ) sSet <. ( .s ` ndx ) , .x. >. ) e. _V |
11 |
8 9 10
|
fvmpt |
|- ( G e. _V -> ( ZMod ` G ) = ( ( G sSet <. ( Scalar ` ndx ) , ZZring >. ) sSet <. ( .s ` ndx ) , .x. >. ) ) |
12 |
3 11
|
syl |
|- ( G e. V -> ( ZMod ` G ) = ( ( G sSet <. ( Scalar ` ndx ) , ZZring >. ) sSet <. ( .s ` ndx ) , .x. >. ) ) |
13 |
1 12
|
eqtrid |
|- ( G e. V -> W = ( ( G sSet <. ( Scalar ` ndx ) , ZZring >. ) sSet <. ( .s ` ndx ) , .x. >. ) ) |