| Step | Hyp | Ref | Expression | 
						
							| 1 |  | zlmbas.w |  |-  W = ( ZMod ` G ) | 
						
							| 2 |  | zlmvsca.2 |  |-  .x. = ( .g ` G ) | 
						
							| 3 |  | ovex |  |-  ( G sSet <. ( Scalar ` ndx ) , ZZring >. ) e. _V | 
						
							| 4 | 2 | fvexi |  |-  .x. e. _V | 
						
							| 5 |  | vscaid |  |-  .s = Slot ( .s ` ndx ) | 
						
							| 6 | 5 | setsid |  |-  ( ( ( G sSet <. ( Scalar ` ndx ) , ZZring >. ) e. _V /\ .x. e. _V ) -> .x. = ( .s ` ( ( G sSet <. ( Scalar ` ndx ) , ZZring >. ) sSet <. ( .s ` ndx ) , .x. >. ) ) ) | 
						
							| 7 | 3 4 6 | mp2an |  |-  .x. = ( .s ` ( ( G sSet <. ( Scalar ` ndx ) , ZZring >. ) sSet <. ( .s ` ndx ) , .x. >. ) ) | 
						
							| 8 | 1 2 | zlmval |  |-  ( G e. _V -> W = ( ( G sSet <. ( Scalar ` ndx ) , ZZring >. ) sSet <. ( .s ` ndx ) , .x. >. ) ) | 
						
							| 9 | 8 | fveq2d |  |-  ( G e. _V -> ( .s ` W ) = ( .s ` ( ( G sSet <. ( Scalar ` ndx ) , ZZring >. ) sSet <. ( .s ` ndx ) , .x. >. ) ) ) | 
						
							| 10 | 7 9 | eqtr4id |  |-  ( G e. _V -> .x. = ( .s ` W ) ) | 
						
							| 11 | 5 | str0 |  |-  (/) = ( .s ` (/) ) | 
						
							| 12 |  | fvprc |  |-  ( -. G e. _V -> ( .g ` G ) = (/) ) | 
						
							| 13 | 2 12 | eqtrid |  |-  ( -. G e. _V -> .x. = (/) ) | 
						
							| 14 |  | fvprc |  |-  ( -. G e. _V -> ( ZMod ` G ) = (/) ) | 
						
							| 15 | 1 14 | eqtrid |  |-  ( -. G e. _V -> W = (/) ) | 
						
							| 16 | 15 | fveq2d |  |-  ( -. G e. _V -> ( .s ` W ) = ( .s ` (/) ) ) | 
						
							| 17 | 11 13 16 | 3eqtr4a |  |-  ( -. G e. _V -> .x. = ( .s ` W ) ) | 
						
							| 18 | 10 17 | pm2.61i |  |-  .x. = ( .s ` W ) |