| Step | Hyp | Ref | Expression | 
						
							| 1 |  | zre |  |-  ( M e. ZZ -> M e. RR ) | 
						
							| 2 | 1 | adantr |  |-  ( ( M e. ZZ /\ A e. ( 0 (,) 1 ) ) -> M e. RR ) | 
						
							| 3 |  | elioore |  |-  ( A e. ( 0 (,) 1 ) -> A e. RR ) | 
						
							| 4 | 3 | adantl |  |-  ( ( M e. ZZ /\ A e. ( 0 (,) 1 ) ) -> A e. RR ) | 
						
							| 5 | 2 4 | readdcld |  |-  ( ( M e. ZZ /\ A e. ( 0 (,) 1 ) ) -> ( M + A ) e. RR ) | 
						
							| 6 | 5 | 3adant2 |  |-  ( ( M e. ZZ /\ N e. ZZ /\ A e. ( 0 (,) 1 ) ) -> ( M + A ) e. RR ) | 
						
							| 7 |  | zre |  |-  ( N e. ZZ -> N e. RR ) | 
						
							| 8 | 7 | 3ad2ant2 |  |-  ( ( M e. ZZ /\ N e. ZZ /\ A e. ( 0 (,) 1 ) ) -> N e. RR ) | 
						
							| 9 |  | ltle |  |-  ( ( ( M + A ) e. RR /\ N e. RR ) -> ( ( M + A ) < N -> ( M + A ) <_ N ) ) | 
						
							| 10 | 6 8 9 | syl2anc |  |-  ( ( M e. ZZ /\ N e. ZZ /\ A e. ( 0 (,) 1 ) ) -> ( ( M + A ) < N -> ( M + A ) <_ N ) ) | 
						
							| 11 |  | elioo3g |  |-  ( A e. ( 0 (,) 1 ) <-> ( ( 0 e. RR* /\ 1 e. RR* /\ A e. RR* ) /\ ( 0 < A /\ A < 1 ) ) ) | 
						
							| 12 |  | simpl |  |-  ( ( 0 < A /\ A < 1 ) -> 0 < A ) | 
						
							| 13 | 11 12 | simplbiim |  |-  ( A e. ( 0 (,) 1 ) -> 0 < A ) | 
						
							| 14 | 3 13 | elrpd |  |-  ( A e. ( 0 (,) 1 ) -> A e. RR+ ) | 
						
							| 15 |  | addlelt |  |-  ( ( M e. RR /\ N e. RR /\ A e. RR+ ) -> ( ( M + A ) <_ N -> M < N ) ) | 
						
							| 16 | 1 7 14 15 | syl3an |  |-  ( ( M e. ZZ /\ N e. ZZ /\ A e. ( 0 (,) 1 ) ) -> ( ( M + A ) <_ N -> M < N ) ) | 
						
							| 17 |  | zltp1le |  |-  ( ( M e. ZZ /\ N e. ZZ ) -> ( M < N <-> ( M + 1 ) <_ N ) ) | 
						
							| 18 | 17 | 3adant3 |  |-  ( ( M e. ZZ /\ N e. ZZ /\ A e. ( 0 (,) 1 ) ) -> ( M < N <-> ( M + 1 ) <_ N ) ) | 
						
							| 19 | 3 | 3ad2ant3 |  |-  ( ( M e. ZZ /\ N e. ZZ /\ A e. ( 0 (,) 1 ) ) -> A e. RR ) | 
						
							| 20 |  | 1red |  |-  ( ( M e. ZZ /\ N e. ZZ /\ A e. ( 0 (,) 1 ) ) -> 1 e. RR ) | 
						
							| 21 | 1 | 3ad2ant1 |  |-  ( ( M e. ZZ /\ N e. ZZ /\ A e. ( 0 (,) 1 ) ) -> M e. RR ) | 
						
							| 22 |  | simpr |  |-  ( ( 0 < A /\ A < 1 ) -> A < 1 ) | 
						
							| 23 | 11 22 | simplbiim |  |-  ( A e. ( 0 (,) 1 ) -> A < 1 ) | 
						
							| 24 | 23 | 3ad2ant3 |  |-  ( ( M e. ZZ /\ N e. ZZ /\ A e. ( 0 (,) 1 ) ) -> A < 1 ) | 
						
							| 25 | 19 20 21 24 | ltadd2dd |  |-  ( ( M e. ZZ /\ N e. ZZ /\ A e. ( 0 (,) 1 ) ) -> ( M + A ) < ( M + 1 ) ) | 
						
							| 26 |  | peano2z |  |-  ( M e. ZZ -> ( M + 1 ) e. ZZ ) | 
						
							| 27 | 26 | zred |  |-  ( M e. ZZ -> ( M + 1 ) e. RR ) | 
						
							| 28 | 27 | 3ad2ant1 |  |-  ( ( M e. ZZ /\ N e. ZZ /\ A e. ( 0 (,) 1 ) ) -> ( M + 1 ) e. RR ) | 
						
							| 29 |  | ltletr |  |-  ( ( ( M + A ) e. RR /\ ( M + 1 ) e. RR /\ N e. RR ) -> ( ( ( M + A ) < ( M + 1 ) /\ ( M + 1 ) <_ N ) -> ( M + A ) < N ) ) | 
						
							| 30 | 6 28 8 29 | syl3anc |  |-  ( ( M e. ZZ /\ N e. ZZ /\ A e. ( 0 (,) 1 ) ) -> ( ( ( M + A ) < ( M + 1 ) /\ ( M + 1 ) <_ N ) -> ( M + A ) < N ) ) | 
						
							| 31 | 25 30 | mpand |  |-  ( ( M e. ZZ /\ N e. ZZ /\ A e. ( 0 (,) 1 ) ) -> ( ( M + 1 ) <_ N -> ( M + A ) < N ) ) | 
						
							| 32 | 18 31 | sylbid |  |-  ( ( M e. ZZ /\ N e. ZZ /\ A e. ( 0 (,) 1 ) ) -> ( M < N -> ( M + A ) < N ) ) | 
						
							| 33 | 16 32 | syld |  |-  ( ( M e. ZZ /\ N e. ZZ /\ A e. ( 0 (,) 1 ) ) -> ( ( M + A ) <_ N -> ( M + A ) < N ) ) | 
						
							| 34 | 10 33 | impbid |  |-  ( ( M e. ZZ /\ N e. ZZ /\ A e. ( 0 (,) 1 ) ) -> ( ( M + A ) < N <-> ( M + A ) <_ N ) ) |