Description: An integer modulo 1 is 0. (Contributed by Paul Chapman, 22-Jun-2011)
Ref | Expression | ||
---|---|---|---|
Assertion | zmod10 | |- ( N e. ZZ -> ( N mod 1 ) = 0 ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | zre | |- ( N e. ZZ -> N e. RR ) |
|
2 | modfrac | |- ( N e. RR -> ( N mod 1 ) = ( N - ( |_ ` N ) ) ) |
|
3 | 1 2 | syl | |- ( N e. ZZ -> ( N mod 1 ) = ( N - ( |_ ` N ) ) ) |
4 | flid | |- ( N e. ZZ -> ( |_ ` N ) = N ) |
|
5 | 4 | oveq2d | |- ( N e. ZZ -> ( N - ( |_ ` N ) ) = ( N - N ) ) |
6 | zcn | |- ( N e. ZZ -> N e. CC ) |
|
7 | 6 | subidd | |- ( N e. ZZ -> ( N - N ) = 0 ) |
8 | 3 5 7 | 3eqtrd | |- ( N e. ZZ -> ( N mod 1 ) = 0 ) |