Description: Two arbitrary integers are congruent modulo 1, see example 4 in ApostolNT p. 107. (Contributed by AV, 21-Jul-2021)
Ref | Expression | ||
---|---|---|---|
Assertion | zmod1congr | |- ( ( A e. ZZ /\ B e. ZZ ) -> ( A mod 1 ) = ( B mod 1 ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | zmod10 | |- ( A e. ZZ -> ( A mod 1 ) = 0 ) |
|
2 | 1 | adantr | |- ( ( A e. ZZ /\ B e. ZZ ) -> ( A mod 1 ) = 0 ) |
3 | zmod10 | |- ( B e. ZZ -> ( B mod 1 ) = 0 ) |
|
4 | 3 | adantl | |- ( ( A e. ZZ /\ B e. ZZ ) -> ( B mod 1 ) = 0 ) |
5 | 2 4 | eqtr4d | |- ( ( A e. ZZ /\ B e. ZZ ) -> ( A mod 1 ) = ( B mod 1 ) ) |