Metamath Proof Explorer


Theorem zmodcld

Description: Closure law for the modulo operation restricted to integers. (Contributed by Mario Carneiro, 28-May-2016)

Ref Expression
Hypotheses zmodcld.1
|- ( ph -> A e. ZZ )
zmodcld.2
|- ( ph -> B e. NN )
Assertion zmodcld
|- ( ph -> ( A mod B ) e. NN0 )

Proof

Step Hyp Ref Expression
1 zmodcld.1
 |-  ( ph -> A e. ZZ )
2 zmodcld.2
 |-  ( ph -> B e. NN )
3 zmodcl
 |-  ( ( A e. ZZ /\ B e. NN ) -> ( A mod B ) e. NN0 )
4 1 2 3 syl2anc
 |-  ( ph -> ( A mod B ) e. NN0 )