| Step |
Hyp |
Ref |
Expression |
| 1 |
|
elznn0 |
|- ( M e. ZZ <-> ( M e. RR /\ ( M e. NN0 \/ -u M e. NN0 ) ) ) |
| 2 |
|
elznn0 |
|- ( N e. ZZ <-> ( N e. RR /\ ( N e. NN0 \/ -u N e. NN0 ) ) ) |
| 3 |
|
nn0mulcl |
|- ( ( M e. NN0 /\ N e. NN0 ) -> ( M x. N ) e. NN0 ) |
| 4 |
3
|
orcd |
|- ( ( M e. NN0 /\ N e. NN0 ) -> ( ( M x. N ) e. NN0 \/ -u ( M x. N ) e. NN0 ) ) |
| 5 |
4
|
a1i |
|- ( ( M e. RR /\ N e. RR ) -> ( ( M e. NN0 /\ N e. NN0 ) -> ( ( M x. N ) e. NN0 \/ -u ( M x. N ) e. NN0 ) ) ) |
| 6 |
|
remulcl |
|- ( ( M e. RR /\ N e. RR ) -> ( M x. N ) e. RR ) |
| 7 |
5 6
|
jctild |
|- ( ( M e. RR /\ N e. RR ) -> ( ( M e. NN0 /\ N e. NN0 ) -> ( ( M x. N ) e. RR /\ ( ( M x. N ) e. NN0 \/ -u ( M x. N ) e. NN0 ) ) ) ) |
| 8 |
|
nn0mulcl |
|- ( ( -u M e. NN0 /\ N e. NN0 ) -> ( -u M x. N ) e. NN0 ) |
| 9 |
|
recn |
|- ( M e. RR -> M e. CC ) |
| 10 |
|
recn |
|- ( N e. RR -> N e. CC ) |
| 11 |
|
mulneg1 |
|- ( ( M e. CC /\ N e. CC ) -> ( -u M x. N ) = -u ( M x. N ) ) |
| 12 |
9 10 11
|
syl2an |
|- ( ( M e. RR /\ N e. RR ) -> ( -u M x. N ) = -u ( M x. N ) ) |
| 13 |
12
|
eleq1d |
|- ( ( M e. RR /\ N e. RR ) -> ( ( -u M x. N ) e. NN0 <-> -u ( M x. N ) e. NN0 ) ) |
| 14 |
8 13
|
imbitrid |
|- ( ( M e. RR /\ N e. RR ) -> ( ( -u M e. NN0 /\ N e. NN0 ) -> -u ( M x. N ) e. NN0 ) ) |
| 15 |
|
olc |
|- ( -u ( M x. N ) e. NN0 -> ( ( M x. N ) e. NN0 \/ -u ( M x. N ) e. NN0 ) ) |
| 16 |
14 15
|
syl6 |
|- ( ( M e. RR /\ N e. RR ) -> ( ( -u M e. NN0 /\ N e. NN0 ) -> ( ( M x. N ) e. NN0 \/ -u ( M x. N ) e. NN0 ) ) ) |
| 17 |
16 6
|
jctild |
|- ( ( M e. RR /\ N e. RR ) -> ( ( -u M e. NN0 /\ N e. NN0 ) -> ( ( M x. N ) e. RR /\ ( ( M x. N ) e. NN0 \/ -u ( M x. N ) e. NN0 ) ) ) ) |
| 18 |
|
nn0mulcl |
|- ( ( M e. NN0 /\ -u N e. NN0 ) -> ( M x. -u N ) e. NN0 ) |
| 19 |
|
mulneg2 |
|- ( ( M e. CC /\ N e. CC ) -> ( M x. -u N ) = -u ( M x. N ) ) |
| 20 |
9 10 19
|
syl2an |
|- ( ( M e. RR /\ N e. RR ) -> ( M x. -u N ) = -u ( M x. N ) ) |
| 21 |
20
|
eleq1d |
|- ( ( M e. RR /\ N e. RR ) -> ( ( M x. -u N ) e. NN0 <-> -u ( M x. N ) e. NN0 ) ) |
| 22 |
18 21
|
imbitrid |
|- ( ( M e. RR /\ N e. RR ) -> ( ( M e. NN0 /\ -u N e. NN0 ) -> -u ( M x. N ) e. NN0 ) ) |
| 23 |
22 15
|
syl6 |
|- ( ( M e. RR /\ N e. RR ) -> ( ( M e. NN0 /\ -u N e. NN0 ) -> ( ( M x. N ) e. NN0 \/ -u ( M x. N ) e. NN0 ) ) ) |
| 24 |
23 6
|
jctild |
|- ( ( M e. RR /\ N e. RR ) -> ( ( M e. NN0 /\ -u N e. NN0 ) -> ( ( M x. N ) e. RR /\ ( ( M x. N ) e. NN0 \/ -u ( M x. N ) e. NN0 ) ) ) ) |
| 25 |
|
nn0mulcl |
|- ( ( -u M e. NN0 /\ -u N e. NN0 ) -> ( -u M x. -u N ) e. NN0 ) |
| 26 |
|
mul2neg |
|- ( ( M e. CC /\ N e. CC ) -> ( -u M x. -u N ) = ( M x. N ) ) |
| 27 |
9 10 26
|
syl2an |
|- ( ( M e. RR /\ N e. RR ) -> ( -u M x. -u N ) = ( M x. N ) ) |
| 28 |
27
|
eleq1d |
|- ( ( M e. RR /\ N e. RR ) -> ( ( -u M x. -u N ) e. NN0 <-> ( M x. N ) e. NN0 ) ) |
| 29 |
25 28
|
imbitrid |
|- ( ( M e. RR /\ N e. RR ) -> ( ( -u M e. NN0 /\ -u N e. NN0 ) -> ( M x. N ) e. NN0 ) ) |
| 30 |
|
orc |
|- ( ( M x. N ) e. NN0 -> ( ( M x. N ) e. NN0 \/ -u ( M x. N ) e. NN0 ) ) |
| 31 |
29 30
|
syl6 |
|- ( ( M e. RR /\ N e. RR ) -> ( ( -u M e. NN0 /\ -u N e. NN0 ) -> ( ( M x. N ) e. NN0 \/ -u ( M x. N ) e. NN0 ) ) ) |
| 32 |
31 6
|
jctild |
|- ( ( M e. RR /\ N e. RR ) -> ( ( -u M e. NN0 /\ -u N e. NN0 ) -> ( ( M x. N ) e. RR /\ ( ( M x. N ) e. NN0 \/ -u ( M x. N ) e. NN0 ) ) ) ) |
| 33 |
7 17 24 32
|
ccased |
|- ( ( M e. RR /\ N e. RR ) -> ( ( ( M e. NN0 \/ -u M e. NN0 ) /\ ( N e. NN0 \/ -u N e. NN0 ) ) -> ( ( M x. N ) e. RR /\ ( ( M x. N ) e. NN0 \/ -u ( M x. N ) e. NN0 ) ) ) ) |
| 34 |
|
elznn0 |
|- ( ( M x. N ) e. ZZ <-> ( ( M x. N ) e. RR /\ ( ( M x. N ) e. NN0 \/ -u ( M x. N ) e. NN0 ) ) ) |
| 35 |
33 34
|
imbitrrdi |
|- ( ( M e. RR /\ N e. RR ) -> ( ( ( M e. NN0 \/ -u M e. NN0 ) /\ ( N e. NN0 \/ -u N e. NN0 ) ) -> ( M x. N ) e. ZZ ) ) |
| 36 |
35
|
imp |
|- ( ( ( M e. RR /\ N e. RR ) /\ ( ( M e. NN0 \/ -u M e. NN0 ) /\ ( N e. NN0 \/ -u N e. NN0 ) ) ) -> ( M x. N ) e. ZZ ) |
| 37 |
36
|
an4s |
|- ( ( ( M e. RR /\ ( M e. NN0 \/ -u M e. NN0 ) ) /\ ( N e. RR /\ ( N e. NN0 \/ -u N e. NN0 ) ) ) -> ( M x. N ) e. ZZ ) |
| 38 |
1 2 37
|
syl2anb |
|- ( ( M e. ZZ /\ N e. ZZ ) -> ( M x. N ) e. ZZ ) |