Step |
Hyp |
Ref |
Expression |
1 |
|
elznn0 |
|- ( M e. ZZ <-> ( M e. RR /\ ( M e. NN0 \/ -u M e. NN0 ) ) ) |
2 |
|
elznn0 |
|- ( N e. ZZ <-> ( N e. RR /\ ( N e. NN0 \/ -u N e. NN0 ) ) ) |
3 |
|
nn0mulcl |
|- ( ( M e. NN0 /\ N e. NN0 ) -> ( M x. N ) e. NN0 ) |
4 |
3
|
orcd |
|- ( ( M e. NN0 /\ N e. NN0 ) -> ( ( M x. N ) e. NN0 \/ -u ( M x. N ) e. NN0 ) ) |
5 |
4
|
a1i |
|- ( ( M e. RR /\ N e. RR ) -> ( ( M e. NN0 /\ N e. NN0 ) -> ( ( M x. N ) e. NN0 \/ -u ( M x. N ) e. NN0 ) ) ) |
6 |
|
remulcl |
|- ( ( M e. RR /\ N e. RR ) -> ( M x. N ) e. RR ) |
7 |
5 6
|
jctild |
|- ( ( M e. RR /\ N e. RR ) -> ( ( M e. NN0 /\ N e. NN0 ) -> ( ( M x. N ) e. RR /\ ( ( M x. N ) e. NN0 \/ -u ( M x. N ) e. NN0 ) ) ) ) |
8 |
|
nn0mulcl |
|- ( ( -u M e. NN0 /\ N e. NN0 ) -> ( -u M x. N ) e. NN0 ) |
9 |
|
recn |
|- ( M e. RR -> M e. CC ) |
10 |
|
recn |
|- ( N e. RR -> N e. CC ) |
11 |
|
mulneg1 |
|- ( ( M e. CC /\ N e. CC ) -> ( -u M x. N ) = -u ( M x. N ) ) |
12 |
9 10 11
|
syl2an |
|- ( ( M e. RR /\ N e. RR ) -> ( -u M x. N ) = -u ( M x. N ) ) |
13 |
12
|
eleq1d |
|- ( ( M e. RR /\ N e. RR ) -> ( ( -u M x. N ) e. NN0 <-> -u ( M x. N ) e. NN0 ) ) |
14 |
8 13
|
syl5ib |
|- ( ( M e. RR /\ N e. RR ) -> ( ( -u M e. NN0 /\ N e. NN0 ) -> -u ( M x. N ) e. NN0 ) ) |
15 |
|
olc |
|- ( -u ( M x. N ) e. NN0 -> ( ( M x. N ) e. NN0 \/ -u ( M x. N ) e. NN0 ) ) |
16 |
14 15
|
syl6 |
|- ( ( M e. RR /\ N e. RR ) -> ( ( -u M e. NN0 /\ N e. NN0 ) -> ( ( M x. N ) e. NN0 \/ -u ( M x. N ) e. NN0 ) ) ) |
17 |
16 6
|
jctild |
|- ( ( M e. RR /\ N e. RR ) -> ( ( -u M e. NN0 /\ N e. NN0 ) -> ( ( M x. N ) e. RR /\ ( ( M x. N ) e. NN0 \/ -u ( M x. N ) e. NN0 ) ) ) ) |
18 |
|
nn0mulcl |
|- ( ( M e. NN0 /\ -u N e. NN0 ) -> ( M x. -u N ) e. NN0 ) |
19 |
|
mulneg2 |
|- ( ( M e. CC /\ N e. CC ) -> ( M x. -u N ) = -u ( M x. N ) ) |
20 |
9 10 19
|
syl2an |
|- ( ( M e. RR /\ N e. RR ) -> ( M x. -u N ) = -u ( M x. N ) ) |
21 |
20
|
eleq1d |
|- ( ( M e. RR /\ N e. RR ) -> ( ( M x. -u N ) e. NN0 <-> -u ( M x. N ) e. NN0 ) ) |
22 |
18 21
|
syl5ib |
|- ( ( M e. RR /\ N e. RR ) -> ( ( M e. NN0 /\ -u N e. NN0 ) -> -u ( M x. N ) e. NN0 ) ) |
23 |
22 15
|
syl6 |
|- ( ( M e. RR /\ N e. RR ) -> ( ( M e. NN0 /\ -u N e. NN0 ) -> ( ( M x. N ) e. NN0 \/ -u ( M x. N ) e. NN0 ) ) ) |
24 |
23 6
|
jctild |
|- ( ( M e. RR /\ N e. RR ) -> ( ( M e. NN0 /\ -u N e. NN0 ) -> ( ( M x. N ) e. RR /\ ( ( M x. N ) e. NN0 \/ -u ( M x. N ) e. NN0 ) ) ) ) |
25 |
|
nn0mulcl |
|- ( ( -u M e. NN0 /\ -u N e. NN0 ) -> ( -u M x. -u N ) e. NN0 ) |
26 |
|
mul2neg |
|- ( ( M e. CC /\ N e. CC ) -> ( -u M x. -u N ) = ( M x. N ) ) |
27 |
9 10 26
|
syl2an |
|- ( ( M e. RR /\ N e. RR ) -> ( -u M x. -u N ) = ( M x. N ) ) |
28 |
27
|
eleq1d |
|- ( ( M e. RR /\ N e. RR ) -> ( ( -u M x. -u N ) e. NN0 <-> ( M x. N ) e. NN0 ) ) |
29 |
25 28
|
syl5ib |
|- ( ( M e. RR /\ N e. RR ) -> ( ( -u M e. NN0 /\ -u N e. NN0 ) -> ( M x. N ) e. NN0 ) ) |
30 |
|
orc |
|- ( ( M x. N ) e. NN0 -> ( ( M x. N ) e. NN0 \/ -u ( M x. N ) e. NN0 ) ) |
31 |
29 30
|
syl6 |
|- ( ( M e. RR /\ N e. RR ) -> ( ( -u M e. NN0 /\ -u N e. NN0 ) -> ( ( M x. N ) e. NN0 \/ -u ( M x. N ) e. NN0 ) ) ) |
32 |
31 6
|
jctild |
|- ( ( M e. RR /\ N e. RR ) -> ( ( -u M e. NN0 /\ -u N e. NN0 ) -> ( ( M x. N ) e. RR /\ ( ( M x. N ) e. NN0 \/ -u ( M x. N ) e. NN0 ) ) ) ) |
33 |
7 17 24 32
|
ccased |
|- ( ( M e. RR /\ N e. RR ) -> ( ( ( M e. NN0 \/ -u M e. NN0 ) /\ ( N e. NN0 \/ -u N e. NN0 ) ) -> ( ( M x. N ) e. RR /\ ( ( M x. N ) e. NN0 \/ -u ( M x. N ) e. NN0 ) ) ) ) |
34 |
|
elznn0 |
|- ( ( M x. N ) e. ZZ <-> ( ( M x. N ) e. RR /\ ( ( M x. N ) e. NN0 \/ -u ( M x. N ) e. NN0 ) ) ) |
35 |
33 34
|
syl6ibr |
|- ( ( M e. RR /\ N e. RR ) -> ( ( ( M e. NN0 \/ -u M e. NN0 ) /\ ( N e. NN0 \/ -u N e. NN0 ) ) -> ( M x. N ) e. ZZ ) ) |
36 |
35
|
imp |
|- ( ( ( M e. RR /\ N e. RR ) /\ ( ( M e. NN0 \/ -u M e. NN0 ) /\ ( N e. NN0 \/ -u N e. NN0 ) ) ) -> ( M x. N ) e. ZZ ) |
37 |
36
|
an4s |
|- ( ( ( M e. RR /\ ( M e. NN0 \/ -u M e. NN0 ) ) /\ ( N e. RR /\ ( N e. NN0 \/ -u N e. NN0 ) ) ) -> ( M x. N ) e. ZZ ) |
38 |
1 2 37
|
syl2anb |
|- ( ( M e. ZZ /\ N e. ZZ ) -> ( M x. N ) e. ZZ ) |