Metamath Proof Explorer


Theorem znbas

Description: The base set of Z/nZ structure. (Contributed by Mario Carneiro, 15-Jun-2015) (Revised by AV, 13-Jun-2019)

Ref Expression
Hypotheses znbas.s
|- S = ( RSpan ` ZZring )
znbas.y
|- Y = ( Z/nZ ` N )
znbas.r
|- R = ( ZZring ~QG ( S ` { N } ) )
Assertion znbas
|- ( N e. NN0 -> ( ZZ /. R ) = ( Base ` Y ) )

Proof

Step Hyp Ref Expression
1 znbas.s
 |-  S = ( RSpan ` ZZring )
2 znbas.y
 |-  Y = ( Z/nZ ` N )
3 znbas.r
 |-  R = ( ZZring ~QG ( S ` { N } ) )
4 eqidd
 |-  ( N e. NN0 -> ( ZZring /s R ) = ( ZZring /s R ) )
5 zringbas
 |-  ZZ = ( Base ` ZZring )
6 5 a1i
 |-  ( N e. NN0 -> ZZ = ( Base ` ZZring ) )
7 3 ovexi
 |-  R e. _V
8 7 a1i
 |-  ( N e. NN0 -> R e. _V )
9 zringring
 |-  ZZring e. Ring
10 9 a1i
 |-  ( N e. NN0 -> ZZring e. Ring )
11 4 6 8 10 qusbas
 |-  ( N e. NN0 -> ( ZZ /. R ) = ( Base ` ( ZZring /s R ) ) )
12 3 oveq2i
 |-  ( ZZring /s R ) = ( ZZring /s ( ZZring ~QG ( S ` { N } ) ) )
13 1 12 2 znbas2
 |-  ( N e. NN0 -> ( Base ` ( ZZring /s R ) ) = ( Base ` Y ) )
14 11 13 eqtrd
 |-  ( N e. NN0 -> ( ZZ /. R ) = ( Base ` Y ) )