| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							znbas.s | 
							 |-  S = ( RSpan ` ZZring )  | 
						
						
							| 2 | 
							
								
							 | 
							znbas.y | 
							 |-  Y = ( Z/nZ ` N )  | 
						
						
							| 3 | 
							
								
							 | 
							znbas.r | 
							 |-  R = ( ZZring ~QG ( S ` { N } ) ) | 
						
						
							| 4 | 
							
								
							 | 
							eqidd | 
							 |-  ( N e. NN0 -> ( ZZring /s R ) = ( ZZring /s R ) )  | 
						
						
							| 5 | 
							
								
							 | 
							zringbas | 
							 |-  ZZ = ( Base ` ZZring )  | 
						
						
							| 6 | 
							
								5
							 | 
							a1i | 
							 |-  ( N e. NN0 -> ZZ = ( Base ` ZZring ) )  | 
						
						
							| 7 | 
							
								3
							 | 
							ovexi | 
							 |-  R e. _V  | 
						
						
							| 8 | 
							
								7
							 | 
							a1i | 
							 |-  ( N e. NN0 -> R e. _V )  | 
						
						
							| 9 | 
							
								
							 | 
							zringring | 
							 |-  ZZring e. Ring  | 
						
						
							| 10 | 
							
								9
							 | 
							a1i | 
							 |-  ( N e. NN0 -> ZZring e. Ring )  | 
						
						
							| 11 | 
							
								4 6 8 10
							 | 
							qusbas | 
							 |-  ( N e. NN0 -> ( ZZ /. R ) = ( Base ` ( ZZring /s R ) ) )  | 
						
						
							| 12 | 
							
								3
							 | 
							oveq2i | 
							 |-  ( ZZring /s R ) = ( ZZring /s ( ZZring ~QG ( S ` { N } ) ) ) | 
						
						
							| 13 | 
							
								1 12 2
							 | 
							znbas2 | 
							 |-  ( N e. NN0 -> ( Base ` ( ZZring /s R ) ) = ( Base ` Y ) )  | 
						
						
							| 14 | 
							
								11 13
							 | 
							eqtrd | 
							 |-  ( N e. NN0 -> ( ZZ /. R ) = ( Base ` Y ) )  |