Step |
Hyp |
Ref |
Expression |
1 |
|
znbas.s |
|- S = ( RSpan ` ZZring ) |
2 |
|
znbas.y |
|- Y = ( Z/nZ ` N ) |
3 |
|
znbas.r |
|- R = ( ZZring ~QG ( S ` { N } ) ) |
4 |
|
eqidd |
|- ( N e. NN0 -> ( ZZring /s R ) = ( ZZring /s R ) ) |
5 |
|
zringbas |
|- ZZ = ( Base ` ZZring ) |
6 |
5
|
a1i |
|- ( N e. NN0 -> ZZ = ( Base ` ZZring ) ) |
7 |
3
|
ovexi |
|- R e. _V |
8 |
7
|
a1i |
|- ( N e. NN0 -> R e. _V ) |
9 |
|
zringring |
|- ZZring e. Ring |
10 |
9
|
a1i |
|- ( N e. NN0 -> ZZring e. Ring ) |
11 |
4 6 8 10
|
qusbas |
|- ( N e. NN0 -> ( ZZ /. R ) = ( Base ` ( ZZring /s R ) ) ) |
12 |
3
|
oveq2i |
|- ( ZZring /s R ) = ( ZZring /s ( ZZring ~QG ( S ` { N } ) ) ) |
13 |
1 12 2
|
znbas2 |
|- ( N e. NN0 -> ( Base ` ( ZZring /s R ) ) = ( Base ` Y ) ) |
14 |
11 13
|
eqtrd |
|- ( N e. NN0 -> ( ZZ /. R ) = ( Base ` Y ) ) |