Description: The base set of Z/nZ is the same as the quotient ring it is based on. (Contributed by Mario Carneiro, 15-Jun-2015) (Revised by AV, 13-Jun-2019) (Revised by AV, 3-Nov-2024)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | znval2.s | |- S = ( RSpan ` ZZring )  | 
					|
| znval2.u | |- U = ( ZZring /s ( ZZring ~QG ( S ` { N } ) ) ) | 
					||
| znval2.y | |- Y = ( Z/nZ ` N )  | 
					||
| Assertion | znbas2 | |- ( N e. NN0 -> ( Base ` U ) = ( Base ` Y ) )  | 
				
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | znval2.s | |- S = ( RSpan ` ZZring )  | 
						|
| 2 | znval2.u |  |-  U = ( ZZring /s ( ZZring ~QG ( S ` { N } ) ) ) | 
						|
| 3 | znval2.y | |- Y = ( Z/nZ ` N )  | 
						|
| 4 | baseid | |- Base = Slot ( Base ` ndx )  | 
						|
| 5 | plendxnbasendx | |- ( le ` ndx ) =/= ( Base ` ndx )  | 
						|
| 6 | 5 | necomi | |- ( Base ` ndx ) =/= ( le ` ndx )  | 
						
| 7 | 1 2 3 4 6 | znbaslem | |- ( N e. NN0 -> ( Base ` U ) = ( Base ` Y ) )  |