Metamath Proof Explorer


Theorem znbaslem

Description: Lemma for znbas . (Contributed by Mario Carneiro, 14-Jun-2015) (Revised by Mario Carneiro, 14-Aug-2015) (Revised by AV, 13-Jun-2019) (Revised by AV, 9-Sep-2021)

Ref Expression
Hypotheses znval2.s
|- S = ( RSpan ` ZZring )
znval2.u
|- U = ( ZZring /s ( ZZring ~QG ( S ` { N } ) ) )
znval2.y
|- Y = ( Z/nZ ` N )
znbaslem.e
|- E = Slot K
znbaslem.k
|- K e. NN
znbaslem.l
|- K < ; 1 0
Assertion znbaslem
|- ( N e. NN0 -> ( E ` U ) = ( E ` Y ) )

Proof

Step Hyp Ref Expression
1 znval2.s
 |-  S = ( RSpan ` ZZring )
2 znval2.u
 |-  U = ( ZZring /s ( ZZring ~QG ( S ` { N } ) ) )
3 znval2.y
 |-  Y = ( Z/nZ ` N )
4 znbaslem.e
 |-  E = Slot K
5 znbaslem.k
 |-  K e. NN
6 znbaslem.l
 |-  K < ; 1 0
7 4 5 ndxid
 |-  E = Slot ( E ` ndx )
8 5 nnrei
 |-  K e. RR
9 8 6 ltneii
 |-  K =/= ; 1 0
10 4 5 ndxarg
 |-  ( E ` ndx ) = K
11 plendx
 |-  ( le ` ndx ) = ; 1 0
12 10 11 neeq12i
 |-  ( ( E ` ndx ) =/= ( le ` ndx ) <-> K =/= ; 1 0 )
13 9 12 mpbir
 |-  ( E ` ndx ) =/= ( le ` ndx )
14 7 13 setsnid
 |-  ( E ` U ) = ( E ` ( U sSet <. ( le ` ndx ) , ( le ` Y ) >. ) )
15 eqid
 |-  ( le ` Y ) = ( le ` Y )
16 1 2 3 15 znval2
 |-  ( N e. NN0 -> Y = ( U sSet <. ( le ` ndx ) , ( le ` Y ) >. ) )
17 16 fveq2d
 |-  ( N e. NN0 -> ( E ` Y ) = ( E ` ( U sSet <. ( le ` ndx ) , ( le ` Y ) >. ) ) )
18 14 17 eqtr4id
 |-  ( N e. NN0 -> ( E ` U ) = ( E ` Y ) )