Step |
Hyp |
Ref |
Expression |
1 |
|
znval2.s |
|- S = ( RSpan ` ZZring ) |
2 |
|
znval2.u |
|- U = ( ZZring /s ( ZZring ~QG ( S ` { N } ) ) ) |
3 |
|
znval2.y |
|- Y = ( Z/nZ ` N ) |
4 |
|
znbaslem.e |
|- E = Slot K |
5 |
|
znbaslem.k |
|- K e. NN |
6 |
|
znbaslem.l |
|- K < ; 1 0 |
7 |
4 5
|
ndxid |
|- E = Slot ( E ` ndx ) |
8 |
5
|
nnrei |
|- K e. RR |
9 |
8 6
|
ltneii |
|- K =/= ; 1 0 |
10 |
4 5
|
ndxarg |
|- ( E ` ndx ) = K |
11 |
|
plendx |
|- ( le ` ndx ) = ; 1 0 |
12 |
10 11
|
neeq12i |
|- ( ( E ` ndx ) =/= ( le ` ndx ) <-> K =/= ; 1 0 ) |
13 |
9 12
|
mpbir |
|- ( E ` ndx ) =/= ( le ` ndx ) |
14 |
7 13
|
setsnid |
|- ( E ` U ) = ( E ` ( U sSet <. ( le ` ndx ) , ( le ` Y ) >. ) ) |
15 |
|
eqid |
|- ( le ` Y ) = ( le ` Y ) |
16 |
1 2 3 15
|
znval2 |
|- ( N e. NN0 -> Y = ( U sSet <. ( le ` ndx ) , ( le ` Y ) >. ) ) |
17 |
16
|
fveq2d |
|- ( N e. NN0 -> ( E ` Y ) = ( E ` ( U sSet <. ( le ` ndx ) , ( le ` Y ) >. ) ) ) |
18 |
14 17
|
eqtr4id |
|- ( N e. NN0 -> ( E ` U ) = ( E ` Y ) ) |