Step |
Hyp |
Ref |
Expression |
1 |
|
zncrng.y |
|- Y = ( Z/nZ ` N ) |
2 |
|
nn0z |
|- ( N e. NN0 -> N e. ZZ ) |
3 |
|
eqid |
|- ( RSpan ` ZZring ) = ( RSpan ` ZZring ) |
4 |
|
eqid |
|- ( ZZring /s ( ZZring ~QG ( ( RSpan ` ZZring ) ` { N } ) ) ) = ( ZZring /s ( ZZring ~QG ( ( RSpan ` ZZring ) ` { N } ) ) ) |
5 |
3 4
|
zncrng2 |
|- ( N e. ZZ -> ( ZZring /s ( ZZring ~QG ( ( RSpan ` ZZring ) ` { N } ) ) ) e. CRing ) |
6 |
2 5
|
syl |
|- ( N e. NN0 -> ( ZZring /s ( ZZring ~QG ( ( RSpan ` ZZring ) ` { N } ) ) ) e. CRing ) |
7 |
|
eqidd |
|- ( N e. NN0 -> ( Base ` ( ZZring /s ( ZZring ~QG ( ( RSpan ` ZZring ) ` { N } ) ) ) ) = ( Base ` ( ZZring /s ( ZZring ~QG ( ( RSpan ` ZZring ) ` { N } ) ) ) ) ) |
8 |
3 4 1
|
znbas2 |
|- ( N e. NN0 -> ( Base ` ( ZZring /s ( ZZring ~QG ( ( RSpan ` ZZring ) ` { N } ) ) ) ) = ( Base ` Y ) ) |
9 |
3 4 1
|
znadd |
|- ( N e. NN0 -> ( +g ` ( ZZring /s ( ZZring ~QG ( ( RSpan ` ZZring ) ` { N } ) ) ) ) = ( +g ` Y ) ) |
10 |
9
|
oveqdr |
|- ( ( N e. NN0 /\ ( x e. ( Base ` ( ZZring /s ( ZZring ~QG ( ( RSpan ` ZZring ) ` { N } ) ) ) ) /\ y e. ( Base ` ( ZZring /s ( ZZring ~QG ( ( RSpan ` ZZring ) ` { N } ) ) ) ) ) ) -> ( x ( +g ` ( ZZring /s ( ZZring ~QG ( ( RSpan ` ZZring ) ` { N } ) ) ) ) y ) = ( x ( +g ` Y ) y ) ) |
11 |
3 4 1
|
znmul |
|- ( N e. NN0 -> ( .r ` ( ZZring /s ( ZZring ~QG ( ( RSpan ` ZZring ) ` { N } ) ) ) ) = ( .r ` Y ) ) |
12 |
11
|
oveqdr |
|- ( ( N e. NN0 /\ ( x e. ( Base ` ( ZZring /s ( ZZring ~QG ( ( RSpan ` ZZring ) ` { N } ) ) ) ) /\ y e. ( Base ` ( ZZring /s ( ZZring ~QG ( ( RSpan ` ZZring ) ` { N } ) ) ) ) ) ) -> ( x ( .r ` ( ZZring /s ( ZZring ~QG ( ( RSpan ` ZZring ) ` { N } ) ) ) ) y ) = ( x ( .r ` Y ) y ) ) |
13 |
7 8 10 12
|
crngpropd |
|- ( N e. NN0 -> ( ( ZZring /s ( ZZring ~QG ( ( RSpan ` ZZring ) ` { N } ) ) ) e. CRing <-> Y e. CRing ) ) |
14 |
6 13
|
mpbid |
|- ( N e. NN0 -> Y e. CRing ) |