Description: Making a commutative ring as a quotient of ZZ and n ZZ . (Contributed by Mario Carneiro, 12-Jun-2015) (Revised by AV, 13-Jun-2019)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | znval.s | |- S = ( RSpan ` ZZring )  | 
					|
| znval.u | |- U = ( ZZring /s ( ZZring ~QG ( S ` { N } ) ) ) | 
					||
| Assertion | zncrng2 | |- ( N e. ZZ -> U e. CRing )  | 
				
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | znval.s | |- S = ( RSpan ` ZZring )  | 
						|
| 2 | znval.u |  |-  U = ( ZZring /s ( ZZring ~QG ( S ` { N } ) ) ) | 
						|
| 3 | zringcrng | |- ZZring e. CRing  | 
						|
| 4 | 1 | znlidl |  |-  ( N e. ZZ -> ( S ` { N } ) e. ( LIdeal ` ZZring ) ) | 
						
| 5 | eqid | |- ( LIdeal ` ZZring ) = ( LIdeal ` ZZring )  | 
						|
| 6 | 2 5 | quscrng |  |-  ( ( ZZring e. CRing /\ ( S ` { N } ) e. ( LIdeal ` ZZring ) ) -> U e. CRing ) | 
						
| 7 | 3 4 6 | sylancr | |- ( N e. ZZ -> U e. CRing )  |